Review of Mass Loss Parameter for Soft PG Grades

Andrew Hanz, MTE Services Inc., Brett Lambden, Husky Energy

FHWA Asphalt Binder ETG

September 19, 2017

Bozeman, MT

Acknowledgments

- MTE
 - Mary Ryan, Doug Herlitzka, Scott Veglahn
- Husky
 - Jenn Penner, Stephanie Parry
- University of Calgary
 - Prof. Martin Jasso

Introduction

- Background
- 2017 Base Asphalt Data
- RTFO Mass Loss Studies
 - Inter-laboratory study
 - Ruggedness Study
 - Effect of RTFO temperature.
- Next Steps

Background

• NCRHP 9-36

- Volatility is more representative of the potential for "blue smoke" than mass change.
- Only a small amount of volatiles (~40% of mass loss) was collected during study.
- Future work
 - Consider a separate measure for binder volatility. Numerous proposals including VCS system, vacuum were proposed.
- Simulation of Plant Aging
 - Conventional mixing/compaction temperatures are 150°C/135°C for HMA, particularly for softer grades.
 - Temperatures are getting lower due to WMA, emissions considerations, etc.

Background Examples of State Specifications

• PG 58-28 for all overlays

lowa

PG 58-28

PG 58-34

Minnesota

Type of Construction	Recommended Asphalt Binder for < 3 Million ESALs (20 yr)	Recommended Asphalt Binder for 3 - 10 Million ESALs (20 yr)	Recommended Asphalt Binder for > 10 Million ESALs (20 yr)
Overlay Wearing Mixture (Top 4") ³	PG 58S-28	PG 58S-28 ¹	PG 58H-28 ¹
New Construction² Wearing Mixture (Top 4") ³	PG 58H-34	PG 58H-34 ¹	PG 58V-34 ¹
All Non-Wear Mixture Below 4" from Surface)		PG 58S-28	

Background AASHTO T240

• Precision and Bias Statement

Condition	Standard Deviation (1s)	Acceptable Range of Two Test Results (d2s)
Single Operator Precision	1s = 0.0061+0.0363(X)	d2s = (0.0061+0.0363(Xavg)) x (2.83)
Multi-Lab Precision	1s = 0.00153+0.1365(X)	d2s = (0.00153+0.1365(Xavg)) x (2.83)

• P&B Statement based on mass loss values ranging from -0.05 to -0.51. Higher mass loss values use the equation to extrapolate.

Data from Round Robin Programs Mean Mass Loss

Data from Round Robin Programs

CSBG and WCTG 2013-2016

- Grades: PG 52-34, 58-34, 64-34, 64-28, 70-28, 64-22, 70-22, 76-22
- Mass Loss: +0.054 to -0.719

Mass Loss Data for Supply Grades

- PG 46-37 is from supplier.
- PG 52S-34 is the base binder for polymer modification. Consists of a blend of PG 58-28 and PG 46-37.
- No discernable trend with storage time.
- Box-Plot indicates that variation is the mean +/- 0.05

Mass Loss Data for Modified Grades

- PG 58S-34 contains enough polymer to make a PG 58 grade with no %R requirement. Other grades according to M332.
- Time series plots show no distinct trend with storage time.
- Mean values for in-spec grades are -0.90 +/-0.05

Discussion Points

- Corrective action has not been effective and can cause product to no longer meet PG specifications.
 - Increased storage temperatures
 - Blending with PG 58-28
- Significant increase in handling in order to ship product that meets mass loss specification.
- Asphalt is high quality in terms of durability
 ΔTc after 20hr PAV is > -1.0°C

High Mass Loss Products Single Operator Repeatability - MTE

Binder	Mass loss %			A	4 -	1 - Durad	12.5	12. D 1	
	Α	В	С	D	Avg	TS	Is Pred	a 2s	azs Pred
PG 46-37	-1.064	-1.078	-1.058	-1.059	-1.06	0.009	0.033	0.019	0.12
PG 58V-34	-0.861	-0.866	-0.843	-0.862	-0.86	0.01	0.025	0.0275	0.094

- Four separate quart cans were taken at the same time from the terminal. Each test replicate represents a different quart can. All have same thermal history.
- For these samples and under controlled environment standard deviation and d2s values are much better than T240.

High Mass Loss Products Multi Lab Repeatability

Dindon		429	d2s			
Binder	Saskatoon	U of C lab	MTE	Lloyd	a2s	Pred
Pen 200/300	-1.19	-0.87	N/A	N/A	0.2689	0.4640
PG 52S-34 MIA	-0.87	-0.71	-0.82	-0.97	0.0625	0.3134

- More data is needed, conflicting results between materials/labs.
- Data sources: Can leverage existing and new round robin data.

Ruggedness Study

- Goals
 - Understand the mass loss of modified and unmodified products.
 - Quantify the effects of procedural variables.

Ruggedness Study Experimental Design

Variable	Factor (+)	Factor (-)
LT PG	-28	-34
Polymer Modified	Yes	No
Re-heat	Yes	No
Hold Time After Pouring	1 hr	3 hrs
Storage Time after Sampling	Two Weeks	Test Immediately

- Each combination was replicated twice. Response is the average of two RTFO jars.
- ANOVA analysis used to identify main effects and significant interactions.
 - 95% Confidence Level
 - Up to three factor interactions included in model.

Ruggedness Study Pareto Chart and Model Statistics

Standard Deviation	R-Sq	Adj R-Sq	Pred R-Sq
0.0136	98.4%	98.1%	96.7%

- Pareto chart plots the standardized effect of each factor.
- LT PG and Modification account for approximately 50% (38 + 12) of effects.
- Third order interactions contribute.

- Average standard deviation between replicates is ~0.015
- Over 95% of variation in response explained by model.

Ruggedness Study Main Effects & Interaction Plots

- Modified asphalt formulation is Elvaloy + PPA.
- Is the PPA causing mass loss increase?

Discussion

- Low temperature PG and Modification were materials variables
 - Both were significant and had the highest effect on mass loss (based on F-value).
- The other three factors selected are process variable.
 - Investigate third order interactions to assess how these influence mass loss for a given binder (grade +modification)

Ruggedness Study

Summary Statistics

Low Temp PG = -28°C							
Modification	Ν	Mean	SE Mean	Std. Dev	Min.	Max	Range
No	16	-0.570	0.0043	0.0171	-0.595	-0.544	0.051
Yes	16	-0.617	0.0064	0.0258	-0.673	-0.578	0.095
Low Temp PG = -34°C							
No	16	-0.740	0.0068	0.0274	-0.790	-0.688	0.102
Yes	16	-0.807	0.0058	0.0234	-0.853	-0.773	0.080

- Due to factors related to sampling and testing the range in mass loss was 0.100 for most of the base asphalt/modification combinations studied.
- For -28 grades all three procedure variables had no effect on mass loss results. Only differentiating factor was modification.
- For -34 grades hold time after pouring had no effect on mass loss. Reheating had an effect on modified grades. Hold time after sampling effected both modified/unmodified. (See Appendix)

Effect of RTFO Temperature Mass Loss – Husky Data

	Pen 20	PG 52S-34 Tk 8	
Temperature °C	Saskatoon Lab	U of C lab	Saskatoon
163	-1.19	-0.87	-0.91
160	-0.87	-0.75	-0.72
155	-0.7	-0.61	-0.70
150	-0.71	-0.47	
145	-0.46	-0.37	

- 15% to 20% of total mass loss occurs between 160°C and 163°C. Both temperatures are still well above plant mixing and compaction range.
- Is this behavior source specific?

Pen 200/300 Continuous Grade

- 163°C = PG 56.6
- 160°C = PG 55.5

Effect of RTFO Temperature Mass Loss – Husky Data

Effect of RTFO Temperature Continuous Grade NCHRP 9-43

- Grade change with temperature was assumed linear.
- Slope is a function of aging index.
- No mass loss data was reported.

Next Steps

- 1. Understand variability for high mass loss binders.
 - a) PG 58H-34 and PG 58V-34 supplied to WCTG and CSBG. What is effect of PPA?
 - b) Improve P&B statement.
 - 2. Share similar slides with CSBG.
 - 3. Other activities as recommended by ETG.
 - a) Further investigation of effects of temperature and source at 160°C. More formal ruggedness study.

Discussion Points Alternatives

- 1. Do nothing.
- 2. Wait for NCHRP 9-60 recommendations.
- 3. Possible Interim Changes
 - Increase mass loss limit to -1.05% for PG XX-34 grades and softer.
 - Maintain -1.00% limit and allow option to run
 RTFO at 160°C as an additional test.

Thank You

Andrew Hanz, Ph.D. Technical Director MTE Services Inc. 608-779-6352 (office) 608-780-2509 (mobile) andrew.hanz@mteservices.com

Appendix – Supplemental Data

Ruggedness Study Main Effects and Interactions

Code	Factor	F-Value	P-Value
Α	LT PG	2801.7	<0.000
В	Modification	279.9	<0.000
С	Reheat	1.61	0.213
D	Hold Time after sampling (S)	6.71	0.014
E	Hold Time after pouring (P)	2.73	0.107
A*B	LT PG x Modification	8.9	0.005
B*C	Modification x Reheat	19.0	<0.000
B*D	Modification x Hold Time (S)	38.8	<0.000
C*E	Reheat x Hold Time (P)	20.4	<0.000
A*B*C	LT PG*Modification*Reheat	7.2	0.011
A*B*D	LT PG*Modification*Hold Time (S)	14.9	<0.000
B*C*E	Modification*Reheat*Hold Time(P)	24.2	<0.000

Ruggedness Study

Effect of Reheating

LT =-28					
Combination Avg Grouping					
No mod. No Reheat	-0.566	А			
No mod. Reheat	-0.573	А			
Mod. No Reheat	-0.619		В		
Mod. Reheat	-0.615		В		

LT =-34					
Combination Avg Grouping					
No mod. No Reheat	-0.725	С			
No mod. Reheat	-0.756		D		
Mod. No Reheat	-0.816			Е	
Mod. Reheat	-0.799			Е	

Effect of Hold Time After Sampling

LT =-28					
Combination Avg Grouping					
No mod. Cert	-0.580	А			
No mod. Retest	-0.560	A			
Mod. Cert	-0.619		В		
Mod. Retest	-0.615		В		

LT =-34							
Combination	Avg	Grouping					
No mod. Cert	-0.760		D				
No mod. Retest	-0.720	С					
Mod. Cert	-0.793			Е			
Mod. Retest	-0.822				F		

Effect of Hold Time after Testing

LT =-28						
Combination	Avg	Grouping				
No mod. 1 hr.	-0.575	А				
No mod. 3 hrs.	-0.566	А				
Mod. 1 hr.	-0.616		В			
Mod. 3 hrs.	-0.618		В			

LT =-34							
Combination	Avg	Grouping					
No mod. 1 hr.	-0.744	С					
No mod. 3 hrs.	-0.736	С					
Mod. 1 hr.	-0.812		D				
Mod. 3 hrs.	-0.803		D				