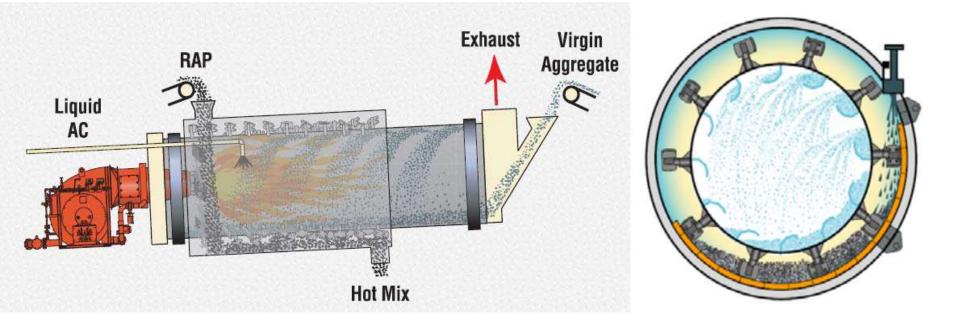


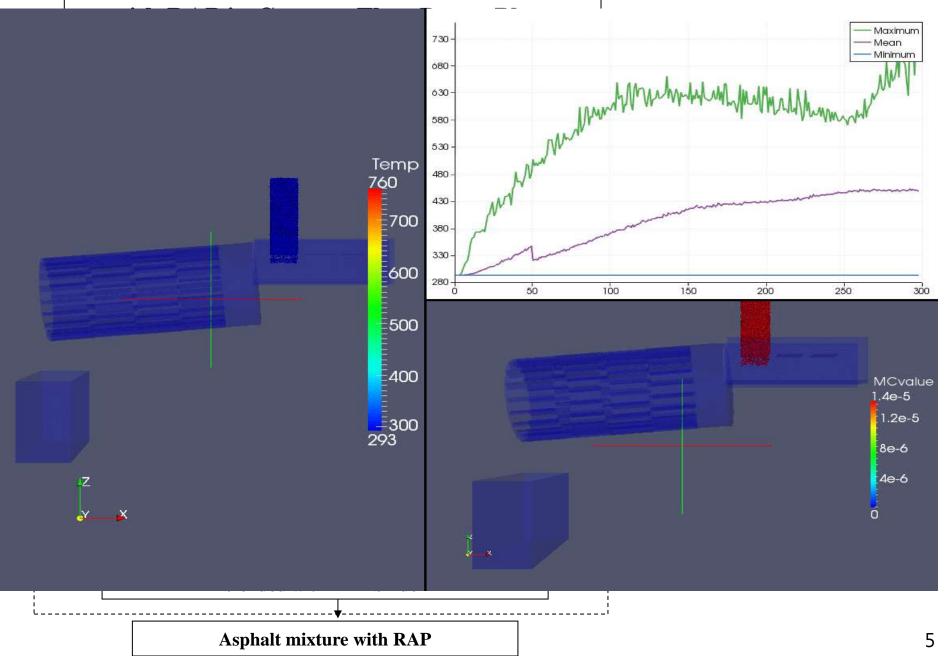
Laboratory Tests and Numerical Simulation of Mixing Superheated Virgin Aggregate with RAP Materials

Kun Zhang¹ Haifang Wen¹ Andrew Hobbs²

¹Washington State University and ²ASTEC Industries INC. FHWA Binder ETGs, Fall River, April 10th, 2015


Outline

- Introduction
- Laboratory Test & Simulation Method
- Results & Discussion
- Conclusions

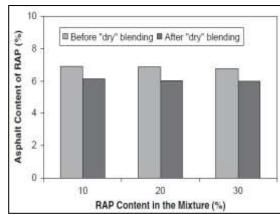


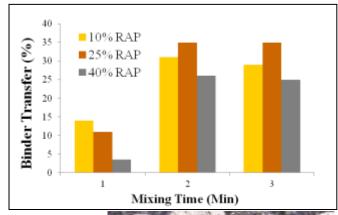
- Findings on effects of RAP on performance of mixes from previous studies are mixed, such as effect of RAP on fatigue cracking
 - Based on only end product of mixes produced in lab or plant without looking into production process
- Plant production condition affects the performance of RAP mixes. (Mogawer et al. 2012)
 - Plant type, RAP percentage, RAP moisture, RAP binder properties, mixing time, production temperature, discharge temperature, storage temperature, et.al.

• Example of production process: Astec Drum Plant (http://www.astecinc.com/products/drying-mixing/sequential-mixing.html)

Example Production Process of HMA/WMA

• RAP content and RAP moisture could affect production condition

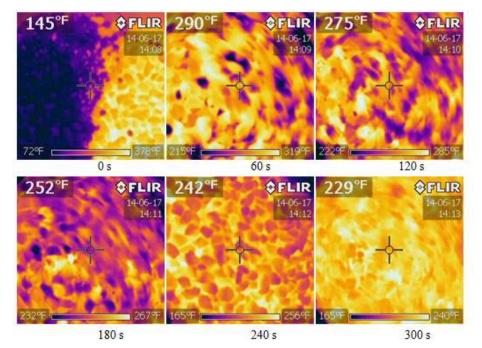

RAP Content (%)	RAP Moisture Content (%)	Superheat Temperature Required (*C)			
		116 °C Mix	127 °C Mix	138 °C Mix	149 °C Min
10	0	132	144	156	168
	1	134	147	159	171
	2	137	149	162	174
	3	140	152	164	177
	4	143	155	167	179
	5	146	158	170	182
20	0	144	158	172	186
	1	151	164	178	192
	2	157	171	184	198
	2 3 4	163	177	191	204
	4	169	183	197	211
	5	175	189	203	217
30	0	162	178	166	209
	1	173	188	315	219
	2	183	199	214	230
	3	194	209	225	241
	4	204	220	236	251
	5	215	231	246	262
40	0	186	203	221	239
	1	218	219	237	256
	2	234	235	253	272
	2 3	250	251	269	288
	4	266	267	286	304
	5	282	283	302	320
50	0	216	238	260	282
	1	240	262	284	309
	2	264	287	309	331
	3	289	311	333	356
	3 4	313	336	358	380
	5	338	360	382	404


(After Brock and Richmond 2005)

- Three fundamental blending mechanisms between RAP binder and virgin binder according to *production process*
 - RAP binder mobilization and transfer to virgin aggregate (step2)
 - Mechanical blending between RAP binder and virgin binder by mixing paddle (Step3)
 - Diffusion between RAP binder and virgin binder(step3+long term effect)

- Previous laboratory study for RAP binder transfer
 - Huang et.al (2005)
 - Superheated aggregate of 190°C
 - Mixing coarse virgin aggregate with fine RAP
 - RAP binder content reduced from 6.8% to 6.0%
 - 11% of RAP binder transferred
 - Mehta et.al (2012)
 - Superheated aggregate of 177°C
 - **RAP:** 10%, 25% and 40%
 - Mixing time: 1 min, 2 min, and 3 min
 - Johnson et.al (2013)
 - 30s for batch plant
 - Laboratory drum mixer could not duplicate plant mixing

Study Objectives


- Effect of RAP content, RAP moisture, mixing time, and virgin aggregate temperature on temperature evolution of RAP and superheated aggregate, and the evolution of RAP binder transfer during production
- Comingling of RAP and virgin binder

Outline

- Introduction
- Laboratory Test & Simulation Method
- Results & Discussion
- Conclusions

- Mixing behavior between virgin aggregate and RAP
 Video camera

- Temperature evolutionInfrared camera
- RAP binder transfer
 Binder content of virgin aggregate after mixing
 AASHTO T164

Simulation Method & Laboratory Experiment

• Simulation set up

Particle density (kg/m ³) for virgin aggregate and RAP materials	2200	
Particle diameter of virgin aggregate (mm)	10	
Particle diameter of RAP (mm)	4.8	
RAP percentage (%)	10, 30, 50	
RAP binder content (%)	4.5	
Particle Young's modulus (N/m ²)	1.38e7*	
Particle Poisson's ratio	0.25*	
Coefficient of restitution	0.40	
Coefficient of sliding friction	0.80	
Coefficient of rolling friction	0.70	
Particle specific thermal capacity (J/kg·K)	800	
Particle thermal conductivity (J/K·s·m)	7	
Initial virgin aggregate temperature (F)	320, 356, 374	
Initial RAP particle temperature (F)	68	
DEM time step (s)	0.00003	
Drum rotational speed (RPM)	50	
Total simulation time (s)	300	

• Discrete element method (DEM)

- Simulate mixing process
- Newton's second law

$$m_{i} \frac{dv_{i}}{dt} = \sum_{j} F_{ij}^{n} + \sum_{j} F_{ij}^{t} + F_{i}^{g}$$
 Translation
$$I_{i} \frac{d\omega_{i}}{dt} = r_{i} \times \sum_{j} F_{ij}^{t} + T_{i}$$
 Rotation

Platform is based on open source software "LIGGGHTS"

• Heat conduction theory

Studying temperature evolution between superheated virgin aggregate and RAP aggregate
Temperature difference

 $\dot{Q}_{pi-pj} = h_{c,i-j} \Delta T_{pi-pi}$

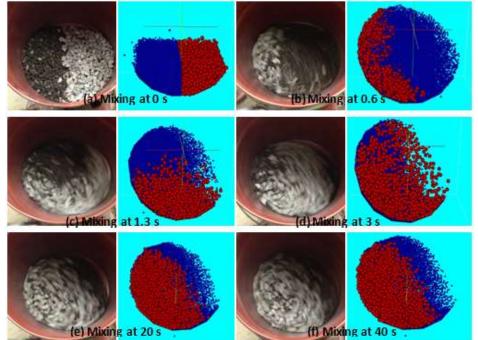
$$\begin{split} h_{c,i-j} &= \frac{4K_{pi}K_{pj}}{K_{pi} + K_{pj}}\sqrt{(A_{contant,i-j})} \\ m_p c_p \, \frac{dT_{p,i}}{dt} &= \sum \dot{Q}_{pi-pj} \dot{Q}_{pi-pj} \end{split} \label{eq:hc_i}$$

- Modified liquid bridge theory (Shi and McCarthy 2008)
 - Define minimum transfer activation temperature
 - Assume to equal critical high temperature PG, 80.6°C for the RAP in this study

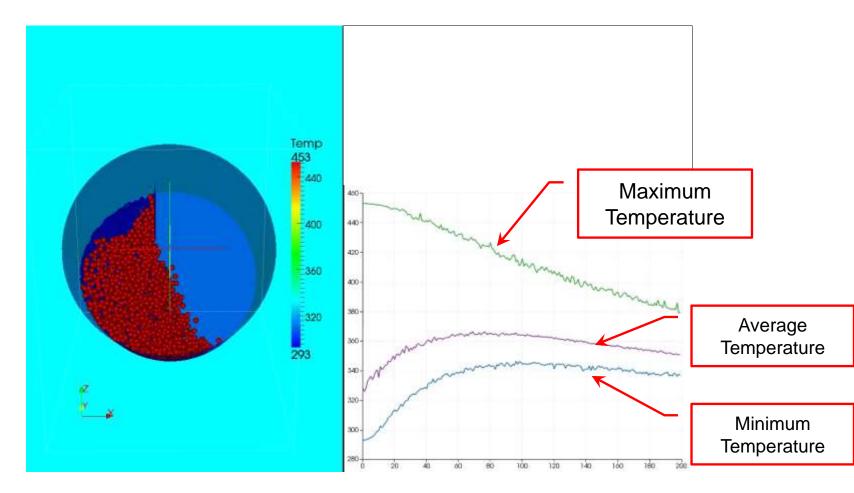
 $bm = bm_i + bm_i$

$$bm_{i} = \frac{m_{i}}{2} \times (1 - \sqrt{1 - \frac{R_{j}^{2}}{(R_{i} + R_{j})^{2}}})$$
 Liquid bridge mass from i
$$bm_{j} = \frac{m_{j}}{2} \times (1 - \sqrt{1 - \frac{R_{i}^{2}}{(R_{i} + R_{j})^{2}}})$$
 Liquid bridge mass from j

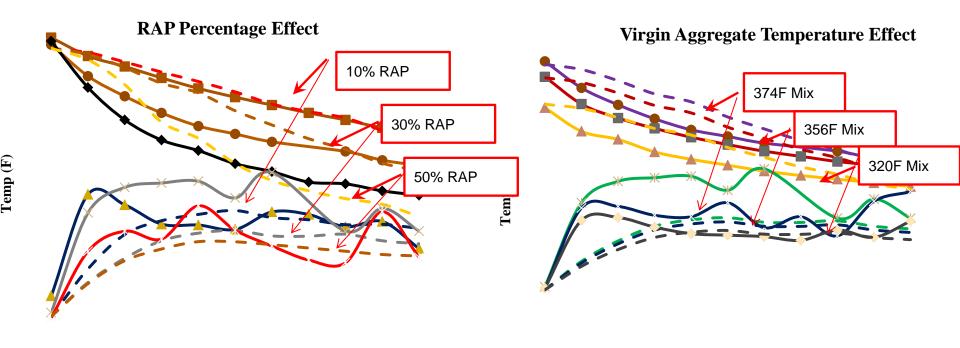
Particle i (After Shi and McCarthy 2008)


Particle

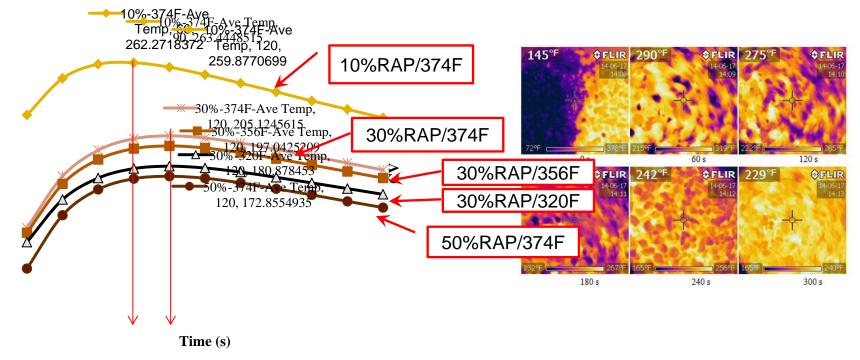
Total liquid bridge mass


Outline

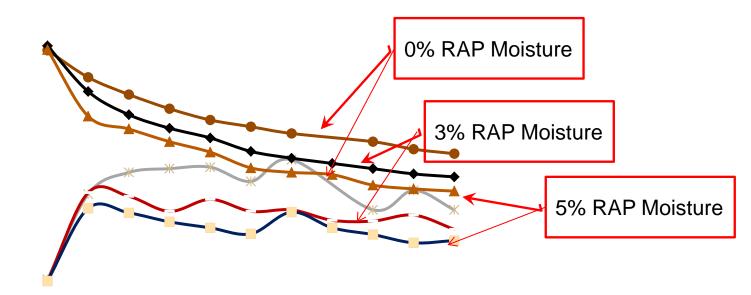
- Introduction
- Laboratory Test & Simulation Method
- Results & Discussion
- Conclusions


- Mixing behavior (Experiment and Simulation)
 - Similar mixing behavior of virgin aggregate and RAP between experiment and DEM simulation
 - Identify *segregation* of coarse virgin aggregate and fine RAP for both experiment and simulation without flights

• Temperature evolution study (Simulation)

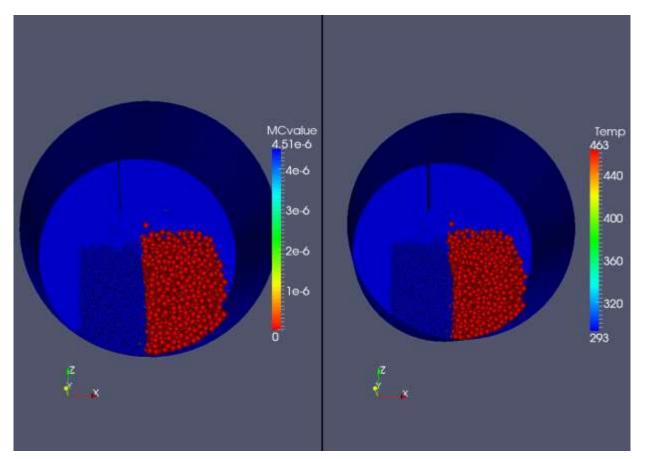


- Temperature evolution study (Experiment and Simulation)
 - Effects of RAP percentage and virgin aggregate temperature

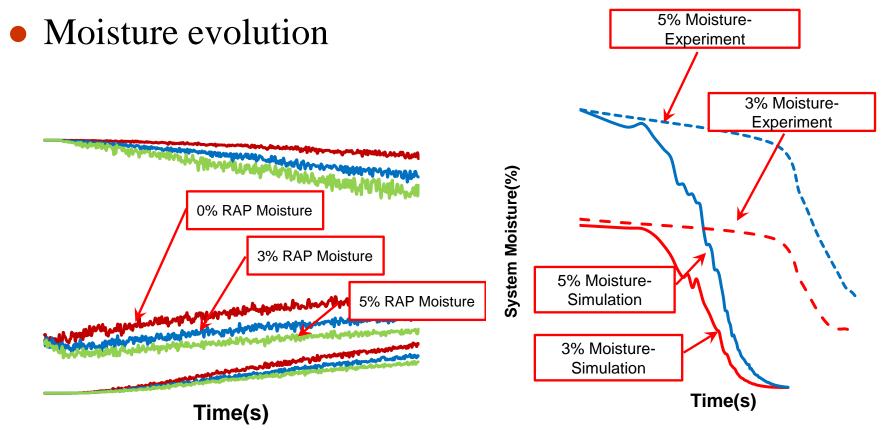


20

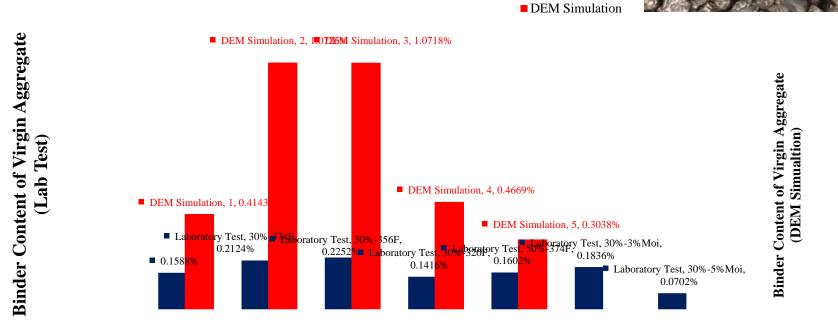
- Mixture temperature vs. mixing time based on DEM Simulation
 - Peak temperature during mixing, 90-120s for lab mixer
 - Uniformity of mixture: coefficient of variation ($CV=\mu/\sigma$)



Temperature Evolution Study (Experiment)
 RAP moisture effect

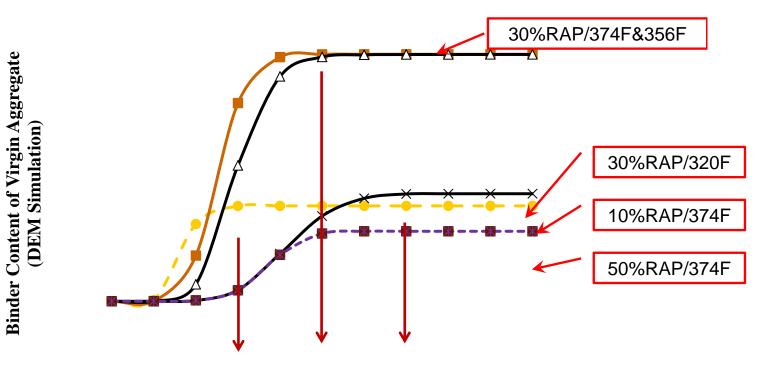

Preliminary simulation of RAP Moisture Effect

- Consider moisture transfer between particles
- Consider energy balance during evaporation



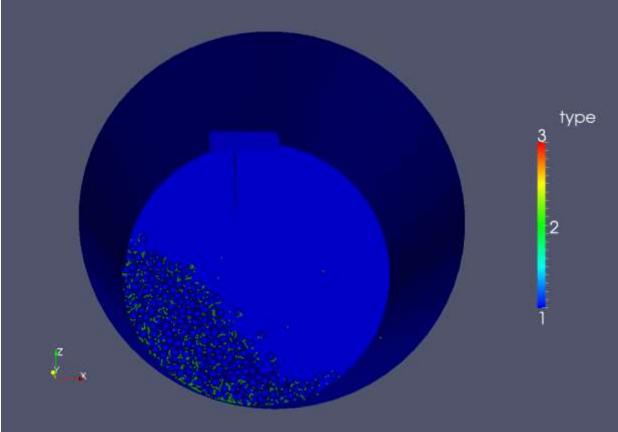
Simulation of RAP Moisture Effect

• RAP moisture effect on the temperature evolution



RAP binder transfer study (Experiment and Simulation)

25


- RAP binder transfer vs. time from DEM Simulation
 - Consistent status of binder transfer

Time (s)

Preliminary Blending/Comingling Simulation

- Consider binder as droplet
- Include droplets of RAP binder and virgin binder
- Define different cohesive (binder-binder) and adhesive (binderaggregate) force

Outline

- Introduction
- Laboratory Test & Simulation Method
- Results & Discussion
- Conclusions

Conclusions

- DEM simulations constitute a promising approach to simulate the mixing process
 - Mixing behavior, temperature evolution, RAP binder transfer
- Temperature evolution study
 - High RAP percentage and high RAP moisture lead to fast drop of virgin aggregate temperature
 - High RAP moisture needs for higher virgin aggregate temperature
 - Longer mixing time is needed for high percentage RAP

Conclusions

- RAP binder transfer
 - RAP binder transfer increased as virgin aggregate temperature increased
 - RAP binder transfer decreased as RAP moisture increased
 - Longer mixing time is needed to reach binder transfer consistency when RAP percentage increased or virgin aggregate temperature decreased
- Production conditions greatly affect the temperature evolution and RAP binder transfer

Thank you! Questions & Suggestions?

