Name of Test Indirect Tensile Asphalt Cracking Test (IDEAL-CT)	Developer(s) Zhou and Co-workers Texas A&M Transportation Institute
Test Method(s) ASTM D8225-19	Adoption by Agencies Alabama, Idaho, Kentucky, Missouri, Oklahoma, Tennessee, Virginia
Description The IDEAL-CT test is similar to the traditional indirect tensile strength test. The test applies a vertical monotonic load on a cylinder specimen at a constant rate of 50 mm/min. The test is stopped when the load is reduced to 0.1kN. During the test, the cross-head displacement is continuously monitored and recorded. Data analysis is conducted based on the load versus displacement curve. The test parameter CT _{Index} is calculated as a function of total fracture energy and the slope of the post-peak curve at 25 percent reduction from the peak load.	<image/>
Test Results Cracking test index (CT _{Index})	Test Temperature(s) PG IT = ((PG HT+ PG LT)/2)+4 25°C is common
Equipment & Cost Stand-alone Load Frame or Data Acquisition Jig for Existing Load Frame	\$10,000 to 20,000 \$4,000
Specimen Fabrication Gyratory specimen	Number of Replicate Specimens A minimum of 3 specimens
Specimen Conditioning Conditioning for 2 hours at Test Temperature	Testing Time <1 minute per specimen
Data Analysis Complexity Simple	Test Variability Medium (10-25% COV)
Field Validations Good (pavement sections in Texas and on FHWA ALF, NCAT Test Track, and MnROAD facilities)	Overall Practicality for Mix Design and QA Good for Mix Design Good for QA
Key References	

• Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Materials and Pavement Design, 18(sup4), 405-427.

• NCHRP IDEA 20-30/IDEA 195. Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control, and Quality Assurance. http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4286, accessed on August 8, 2018.