Warm Mix Asphalt
With RAP
Common Issues in the Asphalt Paving Industry

- Construction Cost Increases
- Environmental concerns and sustainable development “Green Construction”
- Extension of paving season
- Improved product—Field Compaction
- Welfare of Workforce
Warm Mix Technology

Benefits

- Reduced Mixing Temperatures
- Reduced Emissions “Green Construction”
- Reduced Fuel Usage
- Paving Benefits
- Reduced Worker Exposure to Fumes
RAP Benefits

- Significant Cost Savings using just 10% Replacement
- Recycled Product-Saves valuable Resources “Green Construction”
- Quality
- Saves Energy
Warm Mix + RAP

- Significant benefits of using both products in mix at same time
- Question: Are both products compatible?
- What is the effect on mix quality?
Warm Mix + RAP

- Proven Track Record
- European Experience
- US Experience
European Experience

- Warm Mix Scan Tour
 - Warm Mix allowed the use of more RAP
 - Benefits of Warm Mix with high RAP
 - Viscosity reduction aided in compaction
 - Decreased temperatures decreases aging of binder in return helps to compensate for aged RAP binder
 - Better density results with less roller passes
 - Worker Exposure
European Experience

- Norway
 - Kolo Veidekke typically runs 7 to 8 percent RAP in all mixes
 - Kolo Veidekke has stored Warm Mix in Silo for 48 hours that included RAP. This mix was still able to be placed and compacted
Germany

A case study was presented where a 45 percent RAP mix was used with asphalt.

Netherlands

Warm Mix is routinely placed with 50 percent unfractionated RAP
Coarse Aggregate must be DRY

- Aggregates used in Europe have relatively low water absorptions, < 2%
- Aggregates routinely used in the US have higher water absorptions
- Best Practices should be used to minimize the moisture content in aggregate
US Experience

- North Carolina-Blythe Construction
 - Superpave Mix Design Utilizing 10 RAP along with Aspha-Min
 - Stack Test Results-Reduced Emissions
 - VOC’s down 35 percent
 - Very good Density Results
 - Took 30 cores all passed
Project Locations
Field Trial
STH 100 Oak Creek, WI
June 19-20, 2006

- Sasobit
- Evotherm
Milwaukee Tank Farm
Additive Blending
Mix Design

- Used existing WisDOT approved mix design
- 14% RAP, 4.6% Added AC
- SUPERPAVE 12.5mm E-3
- BINDER PG 64-28
- SPECIFIED THICKNESS 1-3/4"
- NORMAL MIX TEMP. 320 F
Muskego Plant
Muskego Plant Emissions Testing
Field Trial #1
Emissions Results

- NO_x 14\% decrease from HMA
- VOC increased from HMA
- CO_2 5\% decrease from HMA
Field Trial #1
Fuel Consumption

10% decrease from HMA

*Additional fine tuning needed to have efficient fuel combustion
Field Emissions Testing
Asphalt Fumes (at the paver)

- Sasobit
 43% - 91% Lower than HMA

- Evotherm
 22% - 82% Lower than HMA
Field Testing

231°F
Laboratory Testing
Field Results (Mix-Overall)

2006 Ryan Road - 12.5mm E3

<table>
<thead>
<tr>
<th>Property</th>
<th>JMF</th>
<th>HMA #1</th>
<th>HMA #2</th>
<th>HMA #3</th>
<th>SAS#1</th>
<th>SAS#2</th>
<th>SAS#3</th>
<th>EVO#1</th>
<th>EVO#2</th>
<th>EVO#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{mm}</td>
<td>2.534</td>
<td>2.521</td>
<td>2.533</td>
<td>2.516</td>
<td>2.526</td>
<td>2.517</td>
<td>2.518</td>
<td>2.518</td>
<td>2.519</td>
<td>2.521</td>
</tr>
<tr>
<td>G_{mb}</td>
<td>2.433</td>
<td>2.441</td>
<td>2.428</td>
<td>2.424</td>
<td>2.437</td>
<td>2.427</td>
<td>2.434</td>
<td>2.436</td>
<td>2.441</td>
<td>2.431</td>
</tr>
<tr>
<td>V_a</td>
<td>4.0%</td>
<td>3.2%</td>
<td>4.1%</td>
<td>3.7%</td>
<td>3.5%</td>
<td>3.6%</td>
<td>3.3%</td>
<td>3.3%</td>
<td>3.1%</td>
<td>3.6%</td>
</tr>
<tr>
<td>VMA</td>
<td>14.2</td>
<td>13.8</td>
<td>14.2</td>
<td>14.4</td>
<td>13.9</td>
<td>14.3</td>
<td>14.0</td>
<td>14.0</td>
<td>13.8</td>
<td>14.1</td>
</tr>
<tr>
<td>VFB</td>
<td>71.8</td>
<td>76.8</td>
<td>71.1</td>
<td>74.3</td>
<td>74.8</td>
<td>74.8</td>
<td>76.4</td>
<td>76.4</td>
<td>77.6</td>
<td>74.5</td>
</tr>
<tr>
<td>P_b</td>
<td>5.30%</td>
<td>5.17%</td>
<td>5.16%</td>
<td>5.29%</td>
<td>5.20%</td>
<td>5.19%</td>
<td>5.17%</td>
<td>5.23%</td>
<td>5.23%</td>
<td>5.21%</td>
</tr>
</tbody>
</table>
Field Results (Mix-Average)

2006 Ryan Road - 12.5mm E3

<table>
<thead>
<tr>
<th>Property</th>
<th>JMF</th>
<th>HMA</th>
<th>SAS</th>
<th>EVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{mm}</td>
<td>2.534</td>
<td>2.523</td>
<td>2.520</td>
<td>2.519</td>
</tr>
<tr>
<td>G_{mb}</td>
<td>2.433</td>
<td>2.431</td>
<td>2.433</td>
<td>2.436</td>
</tr>
<tr>
<td>V_a</td>
<td>4.0%</td>
<td>3.7%</td>
<td>3.5%</td>
<td>3.3%</td>
</tr>
<tr>
<td>VMA</td>
<td>14.2</td>
<td>14.133</td>
<td>14.067</td>
<td>13.967</td>
</tr>
<tr>
<td>VFB</td>
<td>71.8</td>
<td>74.067</td>
<td>75.333</td>
<td>76.167</td>
</tr>
<tr>
<td>P_b</td>
<td>5.30%</td>
<td>5.21%</td>
<td>5.19%</td>
<td>5.22%</td>
</tr>
</tbody>
</table>
Field Results (Running Average)
Final Product
Final Product
Field Testing
Implementation Goals

- Encourage more field trials with:
 - Higher traffic
 - Larger size with representative production of WMA
 - Built in conjunction with a control section
 - Monitored for a minimum of three years by the agency
 - Data collection guidelines, developed by the WMA TWG can be found at:
 http://www.hotmix.org/view_article.php?ID=537

- The factors affecting the economic viability of WMA need to be identified and tracked.
Questions ?