Documenting Performance Related Specifications Shadow Projects

Ramon Bonaquist, P.E.

Outline

- Background on FHWA Performance Related Specifications Contract and Shadow Projects
- Audience for the Shadow Project Reports
- Outline for the Shadow Project Reports
- Content of Selected Sections

Develop and Deploy Performance-Related Specifications (PRS) for Pavement Construction FHWA DTFH61-13-C-00025

U.S. Department of Transportation Federal Highway Administration

Richard Duval

Shree Rao (PI), Harold Von Quintus, Mike Darter

NC STATE UNIVERSITY

Richard Kim (Co-PI, flexible)

ADVANCED ASPHALT TECHNOLOGIES, LLC Engineering Services for the Asphalt Industry

Ray Bonaquist (flexible)

Jason Weiss (rigid)

Objective and Scope

- Further the advancement and deployment of PRS for pavements
 - Viable option for use during pavement construction
 - Agencies can confidently use them for acceptance purposes for a wide variety of construction projects.
- Addresses both flexible and rigid pavements

"Someday we are going to have to raise the bar" – Dale Decker 9/20/2017

Develop and Deploy Performance-Related Specifications (PRS) for Pavement Construction

FHWA DTFH61-13-C-00025

- Development of PRS models and software
 Asphalt and Jointed Plain Concrete Pavements
- Guidelines development
- Deployment projects and PRS validation
- Phase 2
 - Sensitivity analysis
 - Software integration
 - Inspection and material testing program optimization
 - PRS refinements
- ≻Phase 3
 - Pay factor weighting evaluation
 - Risk evaluation
 - PRS final refinements

What Are Shadow PRS Projects?

- Paving projects selected by the participating agency
 - Data for PRS are being collected in addition to the agency's normal acceptance data
- Shadow Project Benefits
 - Training in PRS testing and analysis
 - Demonstrates how would project have been accepted, if PRS were used
 - Understand ways that PRS may impact normal testing and acceptance operations
 - Collect data for PRS improvement

Shadow PRS Status

- Maryland SHA Underway (10 projects)
- Maine DOT Underway
- Missouri DOT Underway (3 projects)
- Ontario MOT Underway
- Western Federal Lands 1st Project Complete, 2nd in 2018

Shadow Project Report Audience

- Agency and contractor personnel responsible for PRS implementation
 - Experienced engineers
 - Construction
 - Specifications
 - Asphalt Materials
 - Testing
 - Pavement design
 - Probably not familiar with viscoelastic continuum damage theory

Shadow Project Report Outline

- Introduction
 - Benefits of using PRS
 - Available assistance
- Overview of PRS for Asphalt
 - Supporting software
 - Concise description of the major steps
- Project description
- Performance volumetric relationships and life differences
- PRS pay tables
- Acceptance data and payment
 - PRS compared to agency practice
- Lessons Learned

Steps in PRS for Asphalt

Preliminary Research

PRS Project

Step 1: Material database development Step 2: Pavement design Step 3: Predict pavement life for various mix volumetric conditions Step 4: Develop pay tables Step 5: Write the PRS specification Step 6: Send the contract out for bid and award Step 7: Mix design and approval*

Step 8: Construction: monitoring through AQC's

Step 9: Pay based on pay tables

Step 1 Material Database Example

NCDOT Superpave Mixtures

Layer Type	Mix Type	Loading Range (Million ESALs)	% Asphalt Binder	Asphalt Binder PG Grade
Surface	S9.5A	Less than 0.3	6.5	PG 64-22
	S9.5B	Less than 3	6.5	PG 64-22
	S9.5C	3 to 10	6.5	PG 70-22
	S12.5B	Less than 3	5.5	PG 64-22
	S12.5C	3 to 30	5.5	PG 70-22
	S12.5D	Over 30	5.5	PG 76-22
Intermediate	l19.0B	Less than 3	4.7	PG 64-22
	I19.0C	3 to 30	4.7	PG 64-22
	l19.0D	Over 30	4.7	PG 70-22
Base	B25.0B	Less than 3	4.3	PG 64-22
	B25.0C	3 or Greater	4.3	PG 64-22
	B37.5C	3 or Greater	4.3	PG 64-22

Step 1 Material Database Example

- Select a typical mix or two in each mixture classification
- Conduct AMPT performance tests on five volumetric conditions (mix design plus four extreme volumetric conditions)
- Store performance properties in the material database

1+4 Volumetric Conditions

Volumetrics	Cond #1	Cond #2	Cond #3	Cond #4	Cond #5
In-place VMA	Design	High	High	Low	Low
In-place VFA	Design	Low	High	Low	High

AMPT Performance Test Methods

Dynamic modulus test

- AASHTO TP 79
- Cyclic fatigue test
 - AASHTO TP 107
- Stress sweep rutting (SSR) test
 - Draft AASHTO specification under review by the Mixture ETG

Dynamic Modulus

Cyclic Fatigue Test Setup

Stress Sweep Rutting Test Setup

FlexMATTM Program Import Data from AMPT

	А	В	С	D	E	F		в н	1)	K L	M N
1	Description: This tab can b	e used to import test	data from IPC Glo	bal AMPT files	directly into the						
2	template. Alternatively, th	e user can copy and pa	aste data directly	into the green	cells within the green						
3	tabs. Note that if data is in	nported using this tab,	the user must sti	ill enter mixture	volumetric properties in		Dynamic Modu	ulus	Fatigue		Clear Template
4	the Sigmoidal Model Fit ta	b. This tab can also be	used to clear all (data that is curr	ently in the template.		Specimen 1		Specimen 1		
567	Instructions: Separate fold Each folder should contain	lers should be created the AMPT data outpu	for each dynamic t files for one dyr	c modulus test a namic modulus	and cyclic fatigue test. or one cyclic fatigue test.		D : M				
/					, .		Dynamic Iviodi	lius	Fatigue		
0	To import dynamic module	us data for the first tes	t replicate into th	ne template, pre	ess the Dynamic		specimen z	·	specimen z		
9	Modulus Specimen 1 butte	on. A prompt will appe	ar. Select the fol	der where the A	AMPT output files for the						
10	dynamic modulus test are	stored. After selecting	the appropriate	folder, the data	from the dynamic						
11	modulus test data will be i	mported into the requ	ired cells within t	the template. R	epeat this process for the		Dynamic Modu	lus	Fatigue		
12	second and third replicate	s by pressing the Dyna	mic Modulus Spe	ecimen 2 and D	ynamic Modulus		Specimen 3	· .	Specimen 3		
13	Specimen 3 buttons, respe	ectively.									
14	To import cyclic fatigue da	ta for the first fatigue :	tact prooce the E	atique Specime	n 1 A prompt will						
15	appear Select the folder w	here the AMPT output	t for the cyclic fat	tique test are st	ored After selecting the				Fatigue		
10	appropriate folder, the dat	ta from the cyclic fatig	ue test data will b	be imported into	o the required cells				Specimen 4		
1/	within the template. Repe	at this process for the	remaining cyclic f	atigue tests by	pressing the Fatigue						
18	Specimen 2, Fatigue Speci	men 3, and Fatigue Sp	ecimen 4 button	s. Note that it is	not necessary to press						
19	all of the buttons if you ha	ve fewer than three dy	namic modulus a	and / or four cy	clic fatigue tests.					·	
20											
21	Press the Clear Template	outton to remove all d	ata that is current	tly in the templ	ate. Note that the Clear						
22	Template button should o	nly be used if the user	wants to revert t	o the blank terr	iplate.						
23											
24		1	1								

NC STATE UNIVERSITY

FlexMATTM Program Analysis

FlexMATTM Program Export Data to FlexPAVETM

					А	В	С	DE	F	G	н	I	J	К	L	M	N	0	Р
				1 2 3	Description: Prov the use of this ta	vides a summa b is optional. ss the Export	ary of the linea	r viscoelastic an	nd fatigue ana	lysis results, to export a	, which can dynamic mo	be exporte	ed as inpu terial inpu	t files to Fl	exPAVE. No	o data er	ntry is requi	red. Note	that
				5	Fatigue Inputs b	utton to expo	t a fatigue ma	terial input file f	for use in Flex	PAVE.	,								
				6	Linear Viscoelast	ic Properties			S-VECD Fatigu	e Properties	5								
				7	E	2.59E+04			α	3.37				Export Fle	xPAVE Dyna	amic	\		
				8	T _{ref}	21.1			C vs	. S	$C = 1 - C_{11}$	$_{1} \cdot S^{2}$		Modu	ulus Inputs				
				9	Shift Factor a	2.2/4E-03	$\log(a_T) = a_1$	$T^2 + a_2T + a_3$	C ₁₁	4.19E-03									
				10	Shift Factor a	-2.870E-01			C ^R Epiluro	4.10E-01	C ^R M	5							
				12	Prony Se	ries		V -t/	y v	2.18F+10	$G = \gamma \cdot N$			Export Fle	exPAVE Fati	igue			
				13	Ti(s)	Ei (kPa)	$E(t) = E_{\infty} + \sum_{i=1}^{n} E_{i}$	$E_m e^{-\rho_m}$	δ	-1.857				I	Inputs				
				14	2.00E+08	4.77E+03	i-	=1	D ^R Failure	Criterion	ļ ļ(1 - C av	-						
				15	2.00E+07	2.83E+03			D ^R	0.64	$D^{\kappa} = -0$	Ne							
	А	В	C D	E	F	G	н	Ι	J	К			1						
1	Descript	ion: Provid	es a summary of the sh	lift fa	ctor model co	officients	which can b	ne exported	acan			$a_{\tau}^{\frac{c_{12}}{\alpha+1}}$	P C12						
2	innut file		/F Net data antru is re			enicients,		be exported	as an			<u> </u>	D^{κ}						
2	input me		E. NOT data entry is re	quire	a.		1				(011)						
2	Instructi	ons: To exp	ort a FlexPAVE input f	lie, pr	ess the Expor	FIEXPAVE	inputs but	tton.				10,0	000						
4				-															
5	Referen	ice Model	$\varepsilon = \frac{\varepsilon_0 \times N}{\varepsilon_0 \times N}$		$\varepsilon - \varepsilon_0$	$\times N_{red}$													
6	ε ₀	0.00224	$v_{\nu p} = (N_I + N)^{\beta}$		$v_{vp} = \frac{V_{vp}}{(N_I \cdot V_I)}$	$+N_{red})^{\beta}$		<u> </u>											
/	N ₁	1./8///		1	_	(E)pl	(\d1-	Expo	ort FlexPA	VE Inputs	s								
8 0	β	0.76643			$N_{red} = A \cdot I$	$V\left(\frac{\varsigma_p}{1}\right)$	$\left \frac{\sigma_v}{p}\right $	<u> </u>											
9 10	Deduced	Lood Time	$r = r \ln(\delta) + r$				(P_a)												
10 11	neuuceu	0 705	$a_{\xi_p} = p_1 \log(\zeta_p) + p_2$			10P2 10d2													
12	PI	0.281			A =	1011.101													
13	P2	0.201																	
14	Vertical S	Stress Shift	$a = d \log(\sigma/P) +$	d															
15	d.	3 191	$u_{\sigma_v} - u_1 \log(O_v / I_a)$	<i>u</i> ₂															
16	d_	-2 782																	
17	u2	-2.702																	
18	Τ(°C)	54																	
19	ref (C)	54																	

NC STATE HINHVERSITV							_
Design Structure General Information							
Structure General Information	Layer Properties						_
Structure Name Flexible Pavement	Layer AC			\sim			
Pavement/Lane Width (m)	Thickness (cm) 10	Inf	înite Layer				
	Material Type Asphalt	Concrete		~	more	GR Based Criterion DR Based Criterion	
						O bit based criterion	
Add Layer Remove Layer Move Layer	Specific Gravity 2.5 (optional)	Expar	nsion Co. (1/C)	0.00005			
SHKIPINER	Strength/Modulus			F .:	1		1
に連めの目目	Poisson's Ratio	0.3000	Alpha	Fatigue 4		Rutting Rutting	
	Einf (KPa)	9.7300e+04	C11	0.0017	Beta	0.8026 p1 0.6069	
AC (Click to Edit Layer)	Ref. Temp. (C)	5	C12	0.5449	Epsilon0	0.0052 p2 0.0719	
Base (Click to Edit Layer)	Shift Factor a1	6.9619e-04	Initial C	0.8000	NI	0.8024 d1 0.0396	
	Shift Factor a2	-0.1620	Gamma	1000000	TR(C)	61 d2 1.6831	
	Shift Factor a3	0.7928	Delta	-1.3500			
Subgrade (Click to Edit Laver)			Import Dam	age Data	Import I	Rutting Data	
	Ti (sec) E 1 2.0000e+16	i (KPa) 757.4885 🔺 +				Condition 2	
	2 2.0000e+15	97.6079	Plazca nota	that EloyPAL	File Hon	e Share View	
	3 2.0000e+14	267.7187	C11 and C1	2 coefficients		🖳 💼 🔏 Cut	
	4 2.0000e+13	300.0952 686 5036		instead of		Copy path	
	6 2.0000e+11 1.2	298e+03			Pin to Quick Co	ppy Paste	Move Copy Dele
	7 2.0000e+10 2.2	287e+03			access	and a second contract	to * to * · ·
	8 2.0000e+09 4.0	1690e+03 🗸 Impo	rt Prony Series	s Data		Clipboard	Organize
					\leftrightarrow \rightarrow \star \prime	n 🕆 🖓 🕺 🕹 🕹 🕹	 Material Database
						 Name 	^
					📌 Quick ac	cess	
					Excel A	nalysis 🖈 🛛 🙀 DM_RS95C_Co	ond2.csv
					Decktor	Fatigue_RS95C	_Cond2.csv
						Rutting_RS95C	_Cond2.csv
					Homev	vork	
					LSD-Ch	lecking	
					Materia	I-Pavem	
					痜 OneDrive	e - North	
					🏂 OneDrive	e - Person	
					💻 This PC		
					📃 Deskto	p	
					Docum	ents	
					Doursk	adc	
						Jaus	

Steps in PRS for Asphalt

Preliminary Research

Step 1: Material database development PRS Project Step 2: Pavement design Step 3: Predict pavement life for various mix volumetric conditions Step 4: Develop pay tables Step 5: Write the PRS specification Step 6: Send the contract out for bid and award Step 7: Mix design and approval* Step 8: Construction: monitoring through AQC's Step 9: Pay based on pay tables

Step 2 Pavement Design

Use current agency pavement design method

AASHTO_® Guide for Design of Pavement Structures 1993

AND MORE!

Steps in PRS for Asphalt

Preliminary Research

PRS Project

Step 1: Material database development
 Step 2: Pavement design

- Step 3: Predict pavement life for various mix volumetric conditions
- Step 4: Develop pay tables
- **Step 5:** Write the PRS specification
- □ Step 6: Send the contract out for bid and award
- Step 7: Mix design and approval*
- Step 8: Construction: monitoring through AQC's
- Step 9: Pay based on pay tables

Step 3 Predict Pavement Performance for Various Volumetrics

- Estimate the life of the design pavement structure via FlexPAVETM for five volumetric conditions using performance properties in the material database
- Develop performance-volumetric relationships
- Determine life difference (i.e., as-designed vs. deviated) for a range of volumetric conditions

PASSFlex[™] Software in development with a target completion date of mid 2018

Step 3 Predict Pavement Performance for Various Volumetrics

10 in. Aggregate Base

NC STATE UNIVERSITY

Step 3 Predict Pavement Life for Various Volumetrics

											Desig	n VMA									
Life Cł	nange	13	13	13	13	13	14	14	14	14	14	15	15	15	15	15	16	16	16	16	16
(yea	rs)*										Desig	n A.V.									
		2	3	4	5	6	2	3	4	5	6	2	3	4	5	6	2	3	4	5	6
	4	1.4	0.9	0.0	-1.8	-5.1	1.6	1.5	1.3	0.6	-0.7	1.4	1.6	1.6	1.5	1.0	1.0	1.4	1.6	1.7	1.7
	5	1.1	0.5	-0.7	-2.9	-7.1	1.3	1.3	0.9	0.1	-1.6	1.2	1.4	1.4	1.2	0.6	0.8	1.2	1.4	1.5	1.4
	6	0.7	0.0	-1.5	-4.3	-9.6	1.1	1.0	0.5	-0.6	-2.6	1.0	1.2	1.2	0.9	0.1	0.5	0.9	1.2	1.3	1.1
In-	7	0.3	-0.6	-2.5	-6.0	-12.8	0.8	0.6	0.0	-1.3	-3.9	0.7	0.9	0.9	0.5	-0.5	0.3	0.7	1.0	1.0	0.8
Place	8	-0.2	-1.4	-3.7	-8.2	-17.0	0.5	0.2	-0.6	-2.3	-5.6	0.5	0.6	0.5	0.0	-1.2	0.0	0.5	0.7	0.7	0.4
A.V.	9	-0.8	-2.3	-5.3	-11.0	-20.0	0.1	-0.3	-1.3	-3.5	-7.6	0.2	0.3	0.1	-0.6	-2.1	-0.2	0.2	0.4	0.4	-0.1
	10	-1.5	-3.4	-7.2	-14.6	-20.0	-0.3	-0.8	-2.2	-4.9	-10.2	-0.1	-0.1	-0.4	-1.3	-3.3	-0.5	0.1	0.1	-0.1	-0.7
	11	-2.3	-4.8	-9.6	-19.2	-20.0	-0.8	-1.5	-3.3	-6.7	-13.5	-0.5	-0.5	-0.9	-2.1	-4.6	-0.9	-0.5	-0.3	-0.5	-1.3
	12	-3.4	-6.5	-12.7	-20.0	-20.0	-1.3	-2.3	-4.6	-9.0	-17.7	-0.9	-1.0	-1.6	-3.2	-6.3	-1.2	-0.8	-0.7	-1.1	-2.1

Steps in PRS for Asphalt

Preliminary Research

PRS Project

Step 4 Develop Pay Tables *Agency Specific Cost Model*

Step 4 Develop Pay Tables

			QA VM/	A @ Ndes	s = 13%	
Pay Factor			QA	Vbe @ N	des	
		11	10	9	8	7
	4	101.5	100.0	100.0	93.9	67.3
	5	100.3	100.0	100.0	84.9	60.0
	6	100.0	100.0	96.3	73.7	0.0
	7	100.0	100.0	88.2	60.0	0.0
In-Place A.V.	8	100.0	97.1	78.3	0.0	0.0
	9	100.0	89.8	65.9	0.0	0.0
	10	96.1	80.8	60.0	0.0	0.0
	11	89.3	69.7	0.0	0.0	0.0
	12	81.1	60.0	0.0	0.0	0.0

			QA VM/	A @ Ndes	s = 15%	
Pay Factor			QA	Vbe @ N	des	
		11	10	9	8	7
	4	101.6	102.4	102.6	102.0	100.2
	5	100.8	101.6	101.7	100.8	100.0
	6	100.0	100.7	100.6	100.0	100.0
	7	100.0	100.0	100.0	100.0	100.0
In-Place A.V.	8	100.0	100.0	100.0	100.0	98.1
	9	100.0	100.0	100.0	100.0	90.9
	10	100.0	100.0	100.0	97.6	82.0
	11	100.0	100.0	100.0	90.9	70.9
	12	100.0	100.0	95.1	82.7	60.0

			QA VM/	A @ Ndes	5 = 14%	
Pay Factor			QA	Vbe @ N	des	
		11	10	9	8	7
	4	102.3	102.1	101.0	100.0	100.0
	5	101.4	101.1	100.0	100.0	95.5
	6	100.4	100.0	100.0	100.0	87.1
	7	100.0	100.0	100.0	97.3	76.6
In-Place A.V.	8	100.0	100.0	100.0	89.7	63.5
	9	100.0	100.0	97.5	80.3	60.0
	10	100.0	100.0	90.5	68.6	0.0
	11	100.0	95.8	81.9	60.0	0.0
	12	97.3	89.2	71.4	0.0	0.0

			QA VMA	A @ Ndes	5 = 16%						
Pay Factor			QA Vbe @ Ndes								
		11	10	9	8	7					
	4	100.0	101.4	102.4	102.9	102.6					
	5	100.0	100.6	101.6	102.0	101.6					
	6	100.0	100.0	100.8	101.1	100.5					
	7	100.0	100.0	100.0	100.0	100.0					
In-Place A.V.	8	100.0	100.0	100.0	100.0	100.0					
	9	100.0	100.0	100.0	100.0	100.0					
	10	100.0	100.0	100.0	100.0	100.0					
	11	100.0	100.0	100.0	100.0	97.4					
	12	98.0	100.0	100.0	99.3	90.9					

Steps in PRS for Asphalt

Preliminary Research

PRS Project

Step 1: Material database development
 Step 2: Pavement design

- Step 3: Predict pavement life for various mix volumetric conditions
- Step 4: Develop pay tables
- Step 5: Write the PRS specification
- Step 6: Send the contract out for bid and award
- Step 7: Mix design and approval*
 - Step 8: Construction: monitoring through AQC's
- Step 9: Pay based on pay tables

Mix Design and Approval

Two Options

- Normal volumetric mix design based on pay tables
- Performance Engineered Mix Design
 - ✓ Indices based on
 - Dynamic Modulus
 - Cyclic Fatigue
 - Stress Sweep Rutting Test

Questions/Discussion