NCHRP 9-55: Recycled Asphalt Shingles in Asphalt Mixtures with Warm Mix Asphalt Technologies

Mix ETG Meeting Bozeman, MT September, 2017 Randy West

Objective

Develop a design and evaluation procedure that provides acceptable performance for asphalt mixtures with RAS and WMA

Unwritten objective

Does using a lower mixing temperature (à la WMA) affect the "activation" of RAS binder and therefore the performance of mixtures containing RAS?

Panel's Concerns

 Allowable range of asphalt mixture production temperatures (i.e. WMA and HMA)

- Mixing efficiency of RAS with virgin binders
 - Binder design and selection
- Evaluate type, source, quality, and RAS characteristics and relate to mix performance
- Minimize risk of poor construction, durability, and poor performance

AASHTO Standards for RAS

• MP-15-09

- max. grind size: 100% pass ½" sieve
- deleterious limits +#4: 3% max, 1.5% lightweight
- max.
- PP 53-09
 - assumed RAS aggregate gradation
 - solvent extraction for RAS asphalt content
 - determine Gse for RAS aggregate spec. gravity
 - estimate shingle availability factor
 - test composite binder if Pb_{virgin} < 0.7 Pb_{Total}

AASHTO Standards for RAS

• MP-25-14

- grind size: 95% pass 3/8" sieve
- deleterious limits +#4: 1.5% total, 0.5% nonmetallic
- PP 78-14
 - eliminate assumed RAS aggregate gradation
 - RAS binder availability factor assumed to be between 0.70 and 0.85
 - virgin binder adjustment table with tiers like RAP

AASHTO Standards for RAS

• PP-78-17

- solvent extraction or ignition method for Pb_{RAS}
- eliminate shingle availability factor
- increase VMA criteria by 0.1% for every 1% RAS
- add criteria for ΔTc on binder recovered from mix
 - agency selected mix cracking test may be conducted in lieu of ΔTc requirement

9-55 Conclusions

- Using WMA with mixtures containing RAS does not appear to have a detrimental effect. Some cracking tests indicate WMA mixtures were better than corresponding HMA mix. All field sections are performing well which makes it challenging to validate performance test criteria.
- Longer term monitoring (5 years +) of field sections is recommended.

7

9-55 Conclusions

- The new ΔTc criteria will make it very difficult to use RAS in asphalt mixtures.
 - the research behind 40 hour PAV was based primarily on REOB and some rejuvenators. Only recently has work been done on RAS binders.
 field aging was based on the top ½ inch of pavement. What about using RAS in lower layers (e.g. high modulus mixes)?
 - Several NCAT test sections call into question the validity of the Delta Tc criterion.

NCHRP 9-55 Project Overview

- The work plan focused on sampling, testing, and performance evaluation of asphalt mixtures containing RAS with and without the use of WMA technologies.
- 3 existing projects
 - 5 new projects
- Mixtures evaluated using numerous laboratory "performance" tests

Existing Field Projects

Location	Date Const.	RAS% RAP%	Mix Variables	
US 287	JS 287 Oct. 2012 5%		HMA	
Fort Worth, TX		15%	WMA (Cecabase RT)	
FM 973	A 973 Dec. 2011 3%		HMA Section 3	
Austin, TX	Jan. 2012	15%	WMA (Evotherm DAT) Section 9	
		5%, 0%	HMA Section 4	
		3%, 15%	HMA w/ PG 58-28, Section 6	
I-88, IL Tollway Aurora, IL	JunAug. 2012	5% 13%	WMA (Evotherm M1), two aggregate types	

Existing Field Projects - Performance

Location	Mix Variables	Age	Field Performance
US 287	НМА	37 mos.	Low-severity transverse cracking (reflective)
	WMA (Cecabase RT)	37 mos.	Low-severity transverse cracking (reflective) Low-severity longitudinal (edge) cracking
FM 973 Austin, TX	HMA PG 64-22 15% RAP-3% RAS	47 mos.	Low-severity transverse cracking Low-severity block cracking
	WMA (Evo. DAT)	47 mos.	Low-severity longitudinal cracking
	HMA PG 64-22 0% RAP-5% RAS	47 mos.	Low-severity longitudinal cracking
	HMA w/ PG 58-28	47 mos.	Low and medium-severity longitudinal cracking Low-severity transverse cracking
I-88, IL Tollway Aurora, IL	WMA (Evo. M1), two agg. types	46 mos.	Low, medium and high-severity transverse cracking (mostly reflective)

Location	Date Const.	RAS % RAP %	Mix Test Sections	Prod. Temp.
SR 96	SR 96 Sept. 3% PC		HMA	324
Larsen, WI	2013	14%	Rediset	317
			Zycotherm	321
US 84	US 84 June 5% PC		HMA, low Va	351
Enterprise AL	2014	15%	HMA, adjusted Va	350
			WMA (foam), low Va	312
			WMA (foam), adjusted Va	304
Union Valley Rd. Oct. 3% PC		3% PC	HMA	315
Oak Ridge, TN	lge, TN 2014 10%		WMA (Evotherm 3G)	267
SR 58	June	5%	HMA w/ PCRAS	305
Wilson, NC	2015	20%	WMA (Evo. 3G) w/ PCRAS	277
			HMA w/ MWRAS	297
			WMA (Evo. 3G) w/ MWRAS	276
SR 39	Oct.	2% MW	HMA	318
LaPorte, IN	2015 159	15%	WMA (foam)	303

As-Constructed In-Place Densities

Site	Mix ID	% Gmm	Standard Deviation	Sign. Diff.?	
	Control 91.6		0.6		
Larsen, WI	Rediset	90.7	1.0	Ν	
51(50	Zycotherm	90.8	1.5		
	Low Va HMA	94.1	0.6	N	
Enterprise, AL	Low Va Gencor Foam	92.5	1.6	IN	
US 84	Adj. Va HMA	92.2	0.9	N	
	Adj. Va Gencor Foam	90.9	1.7	IN	
Oak Ridge, TN Bacoon Valley	НМА	88.8	2.0	N	
Drive	Evotherm 3G	87.0	1.2		
	MWRAS HMA	92.4	0.1	N	
Wilson, NC	MWRAS Evotherm 3G	92.1	0.9	ĨŇ	
SR 58	PCRAS HMA	93.8	0.5	N	
	PCRAS Evotherm 3G	93.0	0.6	IN	
LaPorte, IN	HMA	91.4	0.6	V	
SR 39	AQUABlack WMA	92.4	0.1		

Location	RAS % RAP %	RAPBR RASBR	Mix Test Sections	%Vbe	ΔTc 20 hr PAV
SR 96	3% PC	0.11	HMA	11.4	-3.5
Larsen, WI	14%	0.14-0.15	Rediset	10.8	-3.8
			Zycotherm	11.6	-5.0
US 84	5% PC	0.12-0.13	.12-0.13 HMA, low Va		-7.7
Enterprise AL	15%	0.17-0.20	WMA, low Va	12.2	-8.1
			HMA, adj. Va	10.3	-10.8
			WMA, adj. Va	10.8	-8.6
Union Valley Rd.	on Valley Rd. 3% PC 0.10-0.11 Ridge, TN 10% 0.09-0.11 WMA (chem.)		HMA	9.9	-11.7
Oak Ridge, TN			WMA (chem.)	11.2	-5.5
SR 58	5%	0.19-0.21	HMA w/ MWRAS	10.1	-2.7
Wilson, NC	20%	0.17-0.18	WMA (chem.) w MWRAS	10.9	-2.0
			HMA w/ PCRAS	11.6	-3.2
			WMA (chem.) w/ PCRAS	11.4	-2.9
SR 39	2% MW	0.15	HMA	9.9	-5.6
LaPorte, IN	15%	0.07-0.10	WMA (foam)	10.1	-6.1

New Field Projects - Performance

Location	Mix Variables	Age	Field Performance
SR 96 Larson, WI	Control, Rediset, Zycotherm	24 mos.	Minor reflection cracking over unrubblized PCCP
US 84, Enterprise, AL	HMA & WMA – low Va HMA & WMA – adj. Va	29mos.	Low-severity transverse cracking
Union Valley Rd. Oak Ridge, TN	WMA & HMA	25 mos.	Low-severity transverse cracking. No other distresses
SR 58 Wilson <i>,</i> NC	HMA & WMA w/ PCRAS, HMA & WMA w/ MSRAS	14 mos.	Low-severity transverse cracking. No other distresses
SR 39 LaPorte, IN	WMA & HMA	16 mos.	No cracking or other distresses

Larson, WI

24 month inspection	Transverse (Reflection) Cracks (ft.)				
	Low	High			
Control	87	36	0		
Rediset	0	0	0		
Zycotherm	3	49	0		

at AUBURN UNIVERSITY

Enterprise, AL

and the second states in the

29 month	Longitudinal Cracks (ft.)				
inspection	Low	Med	High		
Low Va HMA	53	0	0		
Low Va WMA	0	0	0		
Adj. Va HMA	0	0	0		
Adj. Va HMA	0	0	0		

Oak Ridge, TN

見たした	25 month	Transverse Crack (ft.)				
にいて	inspection	Low	Med	High		
国家により	HMA	0	0	0		
10000	WMA	4	0	0		

Wilson, NC

14 month	Transverse Cracks (ft.)				
inspection	Low	Med	High		
HMA PCRAS	4	0	0		
WMA PCRAS	0	0	0		
HMA MWRAS	0	0	0		
WMA MWRAS	0	0	0		

LaPorte, IN

HMA

16 month	Cracking (ft.)				
inspection	Low	Med	High		
НМА	0	0	0		
WMA	0	0	0		

Laboratory Testing

- Recovered Binder: PG, ΔTc @ 20 hr PAV, MSCR, LAS
- Plant Mix, Lab Compacted (hot)
 - Stiffness: E*
 - Rutting: FN and HWTT
 - Cracking: BBF, OT, ER, and IDT Creep
 - Cracking (reheated mix): SCB-Jc and IFIT
- Lab Mix, Lab Compacted
 - mix design verification
 - 3 to 4 point AC volumetrics
 - ΔTc @ 40 hr PAV

Caveats on the following slides

- OT tests were conducted using the first generation AMPT jig which have been found to have compliance issues. Comparing the results relative to the TxDOT criteria should be made with caution.
- LADOTD criteria for SCB-Jc are based on LTOA aged specimens. This study did not use any LTOA protocol, so comparing results to the LADOTD criteria should be made with caution.
- Reported Vbe values are based on NCAT hot PMLC volumetric properties using NCAT Gsb values.

Location	RAS % RAP %	Mix Test Sections	%Vbe	ΔTc 20 hr PAV	BBF M Nf @400
SR 96	3% PC	HMA	11.4	-3.5	3.28
Larsen, WI	14%	Rediset	10.8	-3.8	2.58
		Zycotherm	11.6	-5.0	3.20
US 84	5% PC	HMA, low Va	11.1	-7.7	0.96
Enterprise AL	15%	WMA, low Va		-8.1	1.88
		HMA, adj. Va	NSU.3	-10.8	0.58
		WMA, adj. Va	10.8	-8.6	1.15
Union Valley Rd.	3% PC	HMA WNIA	9.9	-11.7	0.81
Oak Ridge, TN	10%	dttest.	11.2	-5.5	0.42
SR 58	5% pair	euna w/ MWRAS	10.1	-2.7	1.10
Wilson, NC	20%	WMA (chem.) w MWRAS	10.9	-2.0	0.55
		HMA w/ PCRAS	11.6	-3.2	0.54
		WMA (chem.) w/ PCRAS	11.4	-2.9	0.50
SR 39	2% MW	HMA	9.8	-5.6	0.67
LaPorte, IN	15%	WMA (foam)	10.1	-6.1	0.82

Location	RAS % RAP %	Mix Test Sections	%Vbe	ΔTc 20 hr PAV	OT >300	Т-К
SR 96	3% PC 14%	HMA	11.4	-3.5	241	А
Larsen, WI		Rediset	10.8	-3.8	285	А
		Zycotherm	11.6	-5.0	436	А
US 84	5% PC	HMA, low Va	11.1	-7.7	19	А
Enterprise AL	15%	WMA, low Va	1200	6 8.1	214	В
		HMA, adj. Va	<u>0.0</u>	-10.8	24	А
		WMA, adj. Va	10.8	-8.6	44	А
Union Valley Rd.	3% PC 10%	HMA MAZ	9.9	-11.7	226	А
Oak Ridge, TN		testi In.)	11.2	-5.5	807	В
SR 58	5° Paired	TA w/ MWRAS	10.1	-2.7	125	А
Wilson, NC		WMA (chem.) w MWRAS	10.9	-2.0	619	С
		HMA w/ PCRAS	11.6	-3.2	215	ΑB
		WMA (chem.) w/ PCRAS	11.4	-2.9	333	В
SR 39	2% MW 15%	HMA	9.8	-5.6	109	А
La?orte, IN		WMA (foam)	10.1	-6.1	158	А

Location	RAS % RAP %	Mix Test Sections	%Vbe	ΔTc 20 hr PAV	ER >1.3
SR 96	3% PC	HMA	11.4	-3.5	3.2
Larsen, WI	14%	Rediset	10.8	-3.8	3.7
		Zycotherm	11.6	-5.0	2.8
US 84	5% PC	HMA, low Va	11.1	-7.7	1.7 *
Enterprise AL	15%	WMA, low Va		-8.1	1.9
		HMA, adj. Va	NSV.3	-10.8	0.6*
		WMA, adj. Va	10.8	-8.6	2.0*
Union Valley Rd.	3% PC 10%	HMA WNIA	9.9	-11.7	4.5
Oak Ridge, TN		t test.	11.2	-5.5	3.1
SR 58	5% pair	euna w/ MWRAS	10.1	-2.7	0.3*
Wilson, NC	20%	WMA (chem.) w MWRAS	10.9	-2.0	2.1
		HMA w/ PCRAS	11.6	-3.2	3.9
		WMA (chem.) w/ PCRAS	11.4	-2.9	2.4
SR 39	2% MW	HMA	9.8	-5.6	2.1
LaPorte, IN	15%	WMA (foam)	-6.1	2.3	

Location	RAS % RAP %	Mix Test Sections	%Vbe	ΔTc 20 hr PAV	SCB-Jc >0.5
SR 96	3% PC	HMA	11.4	-3.5	0.37
Larsen, WI	14%	Rediset	10.8	-3.8	0.41
		Zycotherm	11.6	-5.0	0.36
US 84	5% PC	HMA, low Va	11.1	-7.7	0.41
Enterprise AL	15%	WMA, low Va		-8.1	0.68
		HMA, adj. Va	NSV.3	-10.8	0.47
		WMA, adj. Va	10.8	-8.6	0.65
Union Valley Rd.	3% PC	HMA WNIA	9.9	-11.7	0.64
Oak Ridge, TN	10%	dttest.	11.2	-5.5	0.64
SR 58	5% pair	euna w/ MWRAS	10.1	-2.7	0.32
Wilson, NC	20%	WMA (chem.) w MWRAS	10.9	-2.0	0.38
		HMA w/ PCRAS	11.6	-3.2	0.57
		WMA (chem.) w/ PCRAS	11.4	-2.9	0.40
SR 39	2% MW	HMA	9.8	-5.6	0.50
LaPorte, IN	15%	WMA (foam)	10.1	-6.1	0.55

Location	RAS % RAP %	Mix Test Sections	%Vbe	ΔTc 20 hr PAV	IFIT >8.0	Т-К
SR 96 Larsen, WI	3% PC	HMA	11.4	-3.5	3.3	А
	14%	Rediset	10.8	-3.8	5.8	В
		Zycotherm	11.6	-5.0	2.9	А
US 84	5% PC 15%	HMA, low Va	11.1	-7.7	0.7	ΑB
Enterprise AL		WMA, low Va	12	-8.1	2.9	С
		HMA, adj. Va	NSU	-10.8	0.2	В
		WMA, adj. Va	10.8	-8.6	1.0	А
Union Valley Rd.	3% PC 10%	HMA WNIL	9.9	-11.7	3.3	А
Oak Ridge, TN		t test.	11.2	-5.5	4.9	В
SR 58	5% Pair 20% Pair	euna w/ MWRAS	10.1	-2.7	1.8	А
Wilson, NC		WMA (chem.) w MWRAS	10.9	-2.0	7.3	В
		HMA w/ PCRAS	11.6	-3.2	3.7	С
		WMA (chem.) w/ PCRAS	11.4	-2.9	4.7	С
SR 39	2% MW 15%	HMA	9.3	-5.6	1.1	А
La?orte, IN		WMA (foam)	9.7	-6.1	1.7	В

Mix Design Verifications

	RAS % &	Opt. AC	Meet	Binder Ratios		∆Tc	
Location	Туре		VMA?	RAP	RAS	20-hr PAV	40-hr PAV
WI	3% PC	+0.6	Y>>	0.15	0.13	-3.5	-6.5
AL - Low Va	5% PC	-0.1	Ν	0.14	0.19	-7.7	-10.6
AL – Adj. Va	5% PC	-0.5	Y	0.15	0.21	-10.8	-13.8
TN	3% PC	+0.3	Y>>	0.11	0.09	-11.7	-10.4
NC MRAS	5% MW	+0.2	Y	0.21	0.16	-2.7	-10.5
NC PRAS	5% PC	+0.4	Y	0.20	0.14	-3.2	-7.3
IN	2% MW	+0.3	Y	0.13	0.06	-5.6	-9.5

Production and Construction of RAS Mixtures

 Lower mix production temperatures associated with WMA did not cause plant issues or construction problems for any of the project sites evaluated in this study.
 Similar roller patterns resulted in statistically equivalent as-constructed densities for WMA mixes compared to the corresponding HMA.

Short Term Field Performance

 All projects had less than 5 mm rutting after 2-3 years. No project had any evidence of moisture damage. Cracking is very minor at 1 to 2 years. Reflection cracking is the most common type of cracking. All test sections had similar surface texture depths. Density increased over time for most projects, however, the use of WMA did not appear to affect density changes compared to HMA.

Performance Tests

 WMA mixtures tend to have lower E* values than those of corresponding HMA mixtures in most cases.

- Fn and HWT results indicate WMA mixtures are more susceptible to rutting, but still met suggested criteria.
 - Most WMA mixtures were slightly more resistant to cracking based on OT, IFIT, and Jc.

Performance Tests

- IDT creep compliance & strength test results indicate WMA and HMA mixtures had similar thermal cracking critical temperatures.
- E* parameters generally agree with results obtained from laboratory performance tests and may provide an additional tool to evaluate cracking susceptibility.

Mix Design Verification

- Slight differences in the optimum asphalt content were found for all mixtures. Most of the verified mixtures had higher asphalt contents.
- RAS G_{sb} results were within between lab reproducibility.
- All verified mixes failed the new ΔTc requirement. This criterion is very restrictive and may eliminate RAS.

In General

 Using WMA with mixtures containing RAS does not appear to have a detrimental effect. Some cracking tests indicate WMA mixtures were better than corresponding HMA mix. Early performance of all projects is good which makes it challenging to validate performance test criteria. Longer term monitoring (5 years) of field sections is recommended.

Projects Worth Monitoring Dallas, TX, I-30, SMA with RAS and Advera (July, 2011) Muscatine, IA, Hwy. 61, RAP, RAS & Evotherm (Oct. 2010) SR 19, Nappanee, IN, 3% RAS HMA, 3%RAS WMA, 15% RAP over concrete (Aug. 2009) SR 10, Pauline, IA, 0, 4, 5, & 6% RAS over concrete (Jun.-Jul. 2010) King County, WA, SE 416th Street (Sept. 2009) MnROAD, RAS transitions & shoulders

Projects Worth Monitoring

- Austin, TX, FM 973, SMA with RAP, RAS, with & w/o WMA, sections 3 & 9 (Dec. 2011)
 Ft. Worth, TX, US 287, Dense-graded with RAP, RAS, with & w/o WMA (Cecabase)
- Larson, WI
- Wilson, NCLaPorte, IN

Other NCAT Projects Involving RAS

- 2012 experiment dealing a RAS mix prepared at mixing temperatures from 225 to 350°F.
 - unable to distinguish aging effect from RAS activation effect
- 2012 experiment on Test Track for FDOT
 - Willis et. al. TRR No. 2590, pp. 65-73, 2016.
- 2015 Cracking Group Experiment on Test Track
 2015 Rejuvenator RAP & RAS mix test section

FHWA Accelerated Loading Facility

- Controlled 20°C @ 20-mm
- 425 Super Single Tire
- 100 psi inflation
- 14,200 lb. load

- Loading only one direction
- Lateral Wander
- Two approx. 2-in. asphalt lifts
- approx. 22-in. thick agg. base

Mixes in FHWA 2013 ALF Experiment

Lane	WMA Type	RAP Binder Ratio	RAS Binder Ratio	Virgin Binder PG	Prod. Temp. (F)
1	n/a	0	0	64-22	285
2	foam	0.4	0	58-28	240
3	n/a	0	0.2	64-22	285
4	chem.	0.2	0	64-22	240
5	n/a	0.4	0	64-22	285
6	n/a	0.2	0	64-22	285
7	n/a	0	0.2	64-22	240
8	n/a	0.4	0	58-28	285
9	foam	0.2	0	64-22	240
11	chem.	0.4	0	58-28	240

Lanes were tested one at a time beginning in Fall 2013 and completed in Fall 2015. Lanes 2 and 8 were not included in this paper.

ALF Cracking Performance Measured...

Issues with Loading of Lane 2 and 8

4. Adjusting ALF Passes to 240-in. of Cracking

Lane	Obs. ALF Passes to 240-in. of Cracking	Nf from step 3	Ratio of Lane 1 to Lane n	Adjusted ALF Passes to 240-in. of Cracking
1	416,000	4.32E5	1.00	416,000
3	67,000	5.33E5	0.81	54,307
4	121,000	2.64E5	1.64	198,080
5	45,000	1.20E5	3.61	162,551
6	156,000	5.96E5	0.73	113,110
7	41,000	2.36E5	1.83	75,143
9	296,000	2.10E5	2.06	609,361
11	111,000	1.01E5	4.25	472,289

Recommendations

Move toward BMD ASAP.

- Biggest gaps are
- 1. selection of aging protocol
- 2. selection of cracking test(s)
- 3. identifying appropriate cracking test criteria for mix design and QA.

Other thoughts

- Time and temperature effects on interaction of binder components (virgin, RAP, RAS, rejuvenators) is significant. it seem unlikely that a single lab protocol will simulates all mix production situations.
- WMA didn't significantly affect volumetric mix; but it will affect BMD
 Japan may have it right on the best way to produce high RAP content mixes.

