

Innovative Testing of Ontario's Asphalt Materials

Pamela Marks, P.Eng.

Head, Bituminous Section Ontario Ministry of Transportation

Asphalt Mixture and Construction Expert Task Group Ames, Iowa May 2017

Presentation Outline

- Background
- Moisture Sensitivity Tests
- Hamburg Wheel Tracking Test
- Performance Tests using AMPT
- Future Work
 - Performance Tests using DTS-30
 - Bitumen Bond Strength Test (BBS)
- Binder Test Highlights
- Conclusions

Background

- MTO was 100% Superpave mix design by 2005
 - Superpave has mitigated rutting
 - Cracking is still a concern
- Establishing mix performance testing for design and acceptance of placed mix remains a goal
- Work in this area is expected to be ramping up

Stripping by Static Immersion Test

- Determines the stripping susceptibility of the different components of an asphalt mix (MTO LS-285)
- Aggregates are blended with asphalt cement and the blended material is submerged in distilled water at 49°C for 24 hours
- Stripping susceptibility of the asphalt mix is assessed visually based on the percentage of the retained coating on the aggregate

~15% retained coating

~85% retained coating

Stripping by Static Immersion Test

- The percent coating of various samples can be compared to determine what aggregate, AC, and antistripping treatment combination, provides better moisture resistance
- Minimum satisfactory value for this test is 65% retained coating

Aggregate Type	Aggregate Type No Treatment		Alternative AST-AGG	
Granite	15%	85%	90%	

Tensile Strength Ratio (TSR)

- Determines the change in tensile strength resulting from moisture conditioning followed by a freeze-thaw cycle of compacted asphalt mixtures (AASHTO T283)
- Test is used during mix design to determine susceptibility of an asphalt mix to moisture damage
- In some cases we find this to be insufficient and specify anti-strip to minimize risk of stripping

Moisture Induced Stress Tester (MIST)

- An alternative moisture conditioning process to the TSR's freeze/thaw conditioning
- In addition to a conditioning process, MIST can be used to evaluate specimens based on sample swelling
- Air voids are measured and the percent swelling is calculated using

$$Swelling = \frac{(BRD_{before} - BRD_{after})}{BRD_{before}}$$

Where:

BRD_{before} = Bulk Relative Density prior to MIST conditioning

BRD_{after} = Bulk Relative Density after MIST conditioning

Moisture Sensitivity Test Results

The results of liquid anti-stripping treatments (AST-AC) for the moisture sensitivity are:

Aggregate	Static Immersion		TSR		MIST -TSR		MIST-Swelling	
Туре	No AST	AST-AC	No AST	AST-AC	No AST	AST-AC	No AST	AST-AC
Granite	15%	90%	67%	98%	62.0%	74.0%	4.2%	3.1%
Diabase	98%	*	84%	98%	69.0%	85.0%	2.0%	1.1%

* Not tested

- The sample with the lowest retained coating, also has the lowest TSR, MIST-TSR and highest swelling value
- Alternately, the diabase had greatest retained coating without AST, the highest TSR, MIST-TSR and lowest swelling
- Testing has resumed using Dolomitic Sandstone aggregate

Hamburg Wheel Tracking Test (HWT)

MTO uses our Hamburg Wheel Tracking Machine to:

- Evaluate mixes made with various antistripping additives
- Evaluate specialty mixes (e.g., fiber reinforced HMA)
- Investigate premature pavement failure
- Have not used the HWT test to evaluate mixes before they are used in production or to evaluate mix during production

AMPT

- MTO owns an AMPT (IPC Global) that can run the following tests:
 - Dynamic Modulus
 - Flow Number
 - S-VECD
 - Texas Overlay

Performance Testing using DTS-30

- MTO is purchasing a Dynamic Testing System (DTS-30) that will allow us to run the following:
- Dynamic Modulus
- Flow Number
- Simplified Visco Elastic Continuum Damage (S-VECD)
- Texas Overlay
- Four Point Bending
- Semicircular Bend (SCB)
- Disk-Shaped Compact Tension (DCT)
- Indirect Tensile (IDT) Creep Compliance and Strength
- Resilient Modulus
- TSRST (Thermal Stress Restrained Specimen Test)

Bitumen Bond Strength Test (BBS)

- The BBS test is a simple procedure to measure moisture resistance of the asphalt-aggregate interface for different combinations of materials
- "Pull-Off Strength of Coatings Using Portable Adhesion Testers". (ASTM D4541)
- Just acquired the device

Future Work

- More testing is planned with MIST and Bitumen Bond Strength Test (BBS)
- MTO is embarking on a large mix testing program (mainly involving SCB, DCT, IDT, HWT)
- Also looking at enhancing our recovery process when evaluating production mix:
 - Currently run RTFO after recovery
 - Solvents used
- MTO will explore testing production mix
- Considering proposals to establish a digital image process that measures the risk of Stripping by Static Immersion

Asphalt Cement Test Innovations

- Ash Content Test
- Search Strended Bending Beam Rheometer (ExBBR) Test
- X-Ray Fluorescence (XRF)
- Fourier Transform Infrared (FTIR) Spectroscopy

Ash Content Test

- Ash Content test was implemented to prevent overmodification with Re-Refined Engine Oil Bottoms (REOB)
 - Analysis of over 80 samples showed an excellent correlation between ash content and estimated REOB content
- Limited analysis to date shows excellent correlation between 5 year pavement cracking and ash content

Extended Bending Beam Rheometer (ExBBR) Test

- Determines if AC meets the low temperature performance grade after a physical hardening process that occurs with extended conditioning at cool temperatures
- Test is published as AASHTO TP122-16
- Found best able to predict cracking
- ExBBR determines low temperature grade over 72 hours
 vs. 1 hour for standard grading

Estimation of 72 Hour Stiffness and Creep

 MTO developed multivariable regression formulae to predict the 72 hour ExBBR test based on 1 and 24 hour properties:

m-value at 72 hrs $(T_{ht}) = 0.03239^{*}$ (m-value @ 1 hr) + 0.88952^{*}(m-value @ 24 hr) + 0.01129 m-value at 72 hrs $(T_{lt}) = 0.17770^{*}$ (m-value @ 1 hr) + 0.795125^{*}(m-value @ 24 hr) -0.00869 S at 72 hrs $(T_{ht}) = 0.13495^{*}$ (S @ 1 hr) + 0.94721^{*}(S @ 24 hr) + 3.34123 S at 72 hrs $(T_{lt}) = 0.16874^{*}$ (S @ 1 hr) + 0.93364^{*}(S @ 24 hr) + 0.14202

Where:

 T_{ht} = high test temperature T_{lt} = low test temperature

Regression analysis was conducted on over 330 ExBBR tests

Estimation of 72 Hour Stiffness and Creep

 The predicted m-value and S can be used to estimate ExBBR Low Temperature Limiting Grade that could be useful for quality control purposes

ΔT_c From BBR/ExBBR Test

* Another useful outcome from the BBR test is the ΔT_c :

$$\Delta T_c = T_{stiffness} - T_{creep}$$

Where: $T_{stiffness}$ = critical temperature for stiffness (S)

 T_{creep} = critical temperature for creep (m-value)

- * Of the 62 samples tested, no BBR Δ Tc's where <-5, only ExBBR Δ T_c's dropped below -5, while REOB estimates for these samples ranged from 0 to just over 12%
- Recent results:
 - For a PG64-28 was -7.9
 - For recovered AC with and without RAP and RAS, ΔTc ranged from -4.2 to -8.3

Estimated REOB Content vs. ΔT_c

X-Ray Fluorescence (XRF)

- XRF detects the elemental content of a sample
- Transportation agencies, including MTO, are looking at XRF to identify over-modification of REOB in asphalt cement
- Elemental intensity peaks obtained are all relative to other elements found, so calibration curves are required for each element in a material to be quantified (in ppm)
- The four key elements and the levels detected in a REOB sample are:

10,000 ppm			
3,000 ppm			
300 ppm			
100 ppm			

X-Ray Fluorescence (XRF)

- MTO created calibration curves from base asphalt cement samples with varying percentages of REOB
- ✤ A linear regression curve was created for each element
- Equations currently used by MTO for estimating REOB content based on each element follow:

Element	Equation for Estimating REOB Content
Calcium	$REOB\%(Ca) = \frac{XRF(Ca) - 16}{109}$
Zinc	$REOB\%(Zn) = \frac{XRF(Zn) - 14}{48}$
Molybdenum	$REOB\%(Mo) = \frac{XRF(Mo) - 18}{4}$
Copper	$REOB\%(Cu) = \frac{XRF(Cu)}{1.5}$

Fourier Transform Infrared (FTIR) Spectroscopy

- FTIR detects the infrared energy absorbed in a sample
- Comparing FTIR spectra of an unknown sample to a "standard" sample can be used to spot modifications made to an "unknown" sample
- FTIR also provides information on the molecular bond and functional groups of modifications that are made to a material
- We found a unique FTIR absorbance peak corresponding to REOB
- The peak was observed near wavenumber 1229 cm⁻¹ believed to correspond to polyisobutylene, an additive used in engine oil

FTIR Spectra

REOB Estimation using FTIR and XRF

- FTIR can identify whether REOB is present in the AC
- MTO is estimating % REOB in AC with XRF
- Results are provided below for:
 - comparison between FTIR peak and XRF estimated REOB content; and
 - five year pavement cracking performance

Sample	FTIR Absorption		XRF Count (ppm)				Average REOB
	at 1229 cm ⁻¹	Peak Present?	Ca	Cu	Zn	Мо	Estimate (%)
1	172	Yes	937	24	668	79	13
2	181	Yes	1378	9	331	36	10
3	135	No	23	0	27	10	0.1
4	46	No	0	0	11	0	0
5	282	Yes	945	0	509	29	5.5

Conclusions

- Our main focus has been on testing AC, however:
 - MTO has a long history using HWT for investigations and new mixes
 - The use of swelling after MIST conditioning is promising and warrants further investigation
 - Expect to start evaluating various crack predicting mix tests this year
 - Establishing a mix test for cracking, will be Ontario's first step toward testing production mix for acceptance and will provide Contractors with a tool to use a balanced mix design

Questions?

Pamela Marks, P.Eng.

Head, Bituminous Section Ontario Ministry of Transportation

145 Sir William Hearst Avenue, Room 238Downsview, OntarioM3M 0B6(416) 235-3725

pamela.marks@ontario.ca