NCHRP 9-55: Recycled Asphalt Shingles in Asphalt Mixtures with Warm Mix Asphalt Technologies

Randy West May, 2017

Existing Field Projects

Location	Date Const.	RAS% RAP%	Mix Variables
US 287	Oct. 2012	5%	HMA
Fort Worth, TX		15%	WMA (chem.)
FM 973 Austin, TX	Dec. 2011 Jan. 2012	3% 15%	HMA sect. 3
			WMA (chem.) sect. 9
		5%, 0%	HMA sect. 4
		3%, 15%	HMA w/ PG 58-28, sect. 6
I-88, IL Tollway Aurora, IL	JunAug. 2012	5% 13%	WMA (chem.), two agg. types

Existing Field Projects - Performance

Location	Mix Variables	Age	Field Performance	
US 287 Fort Worth, TX	HMA	37 mos.	Low-severity transverse cracking (reflective)	
	WMA (chem.)	37 mos.	Low-severity transverse cracking (reflective) Low-severity longitudinal (edge) cracking	
FM 973 Austin, TX	HMA PG 64-22 15% RAP-3% RAS	47 mos.	Low-severity transverse cracking Low-severity block cracking	
	WMA (chem.)	47 mos.	Low-severity longitudinal cracking	
	HMA PG 64-22 0% RAP-5% RAS	47 mos.	Low-severity longitudinal cracking	
	HMA w/ PG 58-28	47 mos.	Low and medium-severity longitudinal cracking Low-severity transverse cracking	
I-88, IL Tollway Aurora, IL	WMA (chem.), two agg. types	46 mos.	Low, medium and high-severity transverse cracking (mostly reflective)	

Location	Date Const.	RAS % RAP %	Mix Test Sections	Prod. Temp.
SR 96	Sept. 2013	3% PC 14%	HMA	324
Larsen, WI			Rediset	317
			Zycotherm	321
US 84	June 2014	5% PC 15%	HMA, low Va	351
Enterprise AL			HMA, adjusted Va	350
			WMA (foam), low Va	312
			WMA (foam), adjusted Va	304
Union Valley Rd. Oak Ridge <i>,</i> TN	Oct. 2014	3% PC 10%	HMA	315
			WMA (chem.)	267
SR 58	June 2015	5% 20%	HMA w/ PCRAS	305
Wilson, NC			WMA (chem.) w/ PCRAS	277
			HMA w/ MWRAS	297
			WMA (chem.) w/ MWRAS	276
SR 39	Oct. 2015	2% MW 15%	HMA	318
LaPorte, IN			WMA (foam)	303

New Field Projects

4

New Field Projects - Performance

Location	Mix Variables	Age	Field Performance
SR 96 Larson, WI	Control, Rediset, Zycotherm	24 mos.	Minor reflection cracking over unrubblized PCCP
US 84, Enterprise, AL	HMA & WMA – low Va HMA & WMA – adj. Va	29mos.	Low-severity transverse cracking.
Union Valley Rd. Oak Ridge, TN	WMA & HMA	25 mos.	Low-severity transverse cracking. No other distresses
SR 58 Wilson <i>,</i> NC	HMA & WMA w/ PCRAS, HMA & WMA w/ MSRAS	14 mos.	Low-severity transverse cracking. No other distresses
SR 39 LaPorte, IN	WMA & HMA	16 mos.	No cracking or other distresses

Laboratory Testing

 Recovered Binder: PG, ΔTc, MSCR, LAS Plant mix, Lab Compacted (reheated) Stiffness: E* (confined) Rutting: FN and HWTT Cracking: BBF. ER, OT, IFIT, SCB-Jc, IDT Creep Lab Mix, Lab Compacted mix design verification

Location	RAS % RAP %	Mix Test Sections	%Vbe	ΔТс	OT >300
SR 96 Larsen, WI	3% PC 14%	HMA	11.4	-3.5	241
		Rediset	10.8	-3.8	285
		Zycotherm	11.6	-5.0	436
US 84	5% PC	HMA, low Va	11.1	-7.7	19
Enterprise AL	15%	WMA, low Va	12.2	-8.1	214
		HMA, adj. Va	10.3	-10.8	24
		WMA, adj. Va	10.8	-8.6	44
Union Valley Rd.3% PCOak Ridge, TN10%	3% PC	HMA	9.9	-11.7	226
	10%	WMA (chem.)	11.2	-5.5	807
SR 58 5%	5%	HMA w/ MWRAS	10.1	-2.7	125
Wilson, NC	20%	WMA (chem.) w MWRAS	10.9	-2.0	619
		HMA w/ PCRAS	11.6	-3.2	215
		WMA (chem.) w/ PCRAS	11.4	-2.9	333
SR 39	2% MW	HMA	9.3	-5.6	109
La?orte, IN	15%	WMA (foam)	9.7	-6.1	158

Location	RAS % RAP %	Mix Test Sections	%Vbe	∆Тс	ER >1.3
SR 96 Larsen, WI	3% PC 14%	HMA	11.4	-3.5	3.2
		Rediset	10.8	-3.8	3.7
		Zycotherm	11.6	-5.0	2.8
US 84	5% PC	HMA, low Va	11.1	-7.7	1.7
Enterprise AL	15%	WMA, low Va	12.2	-8.1	1.9
		HMA, adj. Va	10.3	-10.8	0.6
		WMA, adj. Va	10.8	-8.6	2.0
Union Valley Rd.3% PCOak Ridge, TN10%	3% PC	HMA	9.9	-11.7	4.5
	10%	WMA (chem.)	11.2	-5.5	3.1
SR 58 59	5% 20%	HMA w/ MWRAS	10.1	-2.7	0.3
Wilson, NC		WMA (chem.) w MWRAS	10.9	-2.0	2.1
		HMA w/ PCRAS	11.6	-3.2	3.9
		WMA (chem.) w/ PCRAS	11.4	-2.9	2.4
SR 39	2% MW	HMA	9.3	-5.6	2.1
LaPorte, IN	15%	WMA (foam)	9.7	-6.1	2.3

Location	RAS % RAP %	Mix Test Sections	%Vbe	∆Тс	SCB-Jc >0.5
SR 96 Larsen, WI	3% PC 14%	HMA	11.4	-3.5	0.37
		Rediset	10.8	-3.8	0.41
		Zycotherm	11.6	-5.0	0.36
US 84	5% PC	HMA, low Va	11.1	-7.7	0.41
Enterprise AL	15%	WMA, low Va	12.2	-8.1	0.68
		HMA, adj. Va	10.3	-10.8	0.47
		WMA, adj. Va	10.8	-8.6	0.65
Union Valley Rd.3% PCOak Ridge, TN10%	3% PC	HMA	9.9	-11.7	0.64
	10%	WMA (chem.)	11.2	-5.5	0.64
SR 58 5%	5% 20%	HMA w/ MWRAS	10.1	-2.7	0.32
Wilson, NC		WMA (chem.) w MWRAS	10.9	-2.0	0.38
		HMA w/ PCRAS	11.6	-3.2	0.57
		WMA (chem.) w/ PCRAS	11.4	-2.9	0.40
SR 39	2% MW	HMA	9.3	-5.6	0.50
LaPorte, IN	15%	WMA (foam)	9.7	-6.1	0.55

Location	RAS % RAP %	Mix Test Sections	%Vbe	∆Тс	IFIT >8.0
SR 96 Larsen, WI	3% PC 14%	HMA	11.4	-3.5	3.3
		Rediset	10.8	-3.8	5.8
		Zycotherm	11.6	-5.0	2.9
US 84	5% PC	HMA, low Va	11.1	-7.7	0.7
Enterprise AL	15%	WMA, low Va	12.2	-8.1	2.9
		HMA, adj. Va	10.3	-10.8	0.2
		WMA, adj. Va	10.8	-8.6	1.0
Union Valley Rd.3% PCOak Ridge, TN10%	3% PC	HMA	9.9	-11.7	3.3
	10%	WMA (chem.)	11.2	-5.5	4.9
SR 58 59	5% 20%	HMA w/ MWRAS	10.1	-2.7	1.8
Wilson, NC		WMA (chem.) w MWRAS	10.9	-2.0	7.3
		HMA w/ PCRAS	11.6	-3.2	3.7
		WMA (chem.) w/ PCRAS	11.4	-2.9	4.7
SR 39	2% MW	HMA	9.3	-5.6	1.1
LaPorte, IN	15%	WMA (foam)	9.7	-6.1	1.7

E* Parameters as Cracking Indicators

PRELIMINARY FINDINGS

Production and Construction of RAS Mixtures
Mix Design Verification
Short Term Field Performance
Performance Tests Results

Production and Construction of RAS Mixtures

 Lower mix production temperatures associated with WMA did not cause plant issues or construction problems for any of the project sites evaluated in this study.
 Similar roller patterns resulted in statistically equivalent as-constructed densities for WMA mixes compared to the corresponding HMA

Short Term Field Performance

- All projects had less than 5 mm rutting after 2-3 years.
 No project had any evidence of moisture damage.
 Reflection cracking was the most common cracking distress.
 - All test sections had similar surface texture depths.
- The use of WMA did not appear to effect density changes under traffic compared to HMA. Density did change over time for most projects.

Mix Design Verification

- Slight differences in the optimum asphalt content were found for all mixtures. The tendency was for verified mixtures to have higher asphalt contents.
 - Critical properties such as the specific gravity of the aggregate tended to have higher verified values (RAS G_{Sb} between lab variability).

Performance Tests

 WMA mixtures tend to have lower E* values than those of corresponding HMA mixtures in most cases.

 Fn and HWT results indicate WMA mixtures are more susceptible to rutting, but still met suggested criteria.

Most WMA mixtures were slightly more resistant to cracking (OT, IFIT, ER and Jc).

Performance Tests

- Analysis of IDT creep compliance & strength tests indicate WMA mixtures generally have a small improvement in low temperature cracking.
 - E* parameters generally agree with results obtained from laboratory performance tests. Thus, providing an additional tool to evaluate cracking susceptibility.

In General

- WMA mixtures had better lab results for cracking resistance and were slightly more susceptible to rutting.
- All field sections are performing well which makes it challenging to validate performance test criteria.
- Long term monitoring of field sections is recommended.

