Enhanced Durability Through Increased In-Place Pavement Density

FHWA Asphalt Mixture Expert Task Group (ETG)
April 27, 2016

Tim Aschenbrener, P.E.
Federal Highway Administration
Part 626.3 Policy.

“Pavement shall be designed to accommodate current and predicted traffic needs in a safe, **durable**, and cost effective manner.”
Premise:

✓ Compaction is essential for long-term pavement performance

✓ There are many compaction enhancements currently in use

✓ Compaction goals can be improved
Effect of Air Voids on Fatigue Cracking

<table>
<thead>
<tr>
<th>Study</th>
<th>Lab/Field</th>
<th>Mix Type</th>
<th>Air Voids Evaluated</th>
<th>Reduction in Fatigue Life for 1% Void Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC Berkeley</td>
<td>Lab</td>
<td>British Std</td>
<td>4 - 14%</td>
<td>20.6%</td>
</tr>
<tr>
<td>(1969)</td>
<td></td>
<td>CA Fine</td>
<td>5 - 8%</td>
<td>43.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA Coarse</td>
<td>2.5 – 7%</td>
<td>33.8%</td>
</tr>
<tr>
<td>UCB (1996)</td>
<td>Lab</td>
<td>CA Dense-Graded</td>
<td>1 - 3% 4 - 6% 7 - 9%</td>
<td>15.1%</td>
</tr>
<tr>
<td>WesTrack</td>
<td>Lab</td>
<td>Fine</td>
<td>4, 8, 12%</td>
<td>13.5%</td>
</tr>
<tr>
<td>(2002)</td>
<td></td>
<td>Fine-Plus</td>
<td>4, 8, 12%</td>
<td>13.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coarse</td>
<td>4, 8, 12%</td>
<td>9.0%</td>
</tr>
<tr>
<td></td>
<td>Field</td>
<td>Fine/Fine-Plus</td>
<td>4, 8, 12%</td>
<td>21.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coarse</td>
<td>4, 8, 12%</td>
<td>8.2%</td>
</tr>
<tr>
<td>AI (2010)</td>
<td>Lab</td>
<td>9.5 mm Dense</td>
<td>4 – 11.5%</td>
<td>9.2%</td>
</tr>
</tbody>
</table>
Average Reduction in Fatigue Life for 1% increase in Air Voids

- UCB 1969: 27.2%
- UCB 1996: 15.1%
- WesTrack 2002: 8.7%
- Al 2010: 9.2%
Effect of Air Voids on Permanent Deformation

<table>
<thead>
<tr>
<th>Study</th>
<th>Lab/Field</th>
<th>Mix Type</th>
<th>Air Voids Evaluated</th>
<th>Final Field Rut Depth (mm)</th>
<th>Increase in Rut Depth for 1% Void Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>WesTrack (2002)</td>
<td>Field</td>
<td>Fine/Fine-Plus Original Coarse</td>
<td>4, 8, 12%</td>
<td>9 - 35</td>
<td>11.5%</td>
</tr>
<tr>
<td></td>
<td>Field</td>
<td>Replacement Coarse</td>
<td>4, 8, 12%</td>
<td>13 - 36</td>
<td>9.6%</td>
</tr>
<tr>
<td></td>
<td>Field</td>
<td>Fine/Fine-Plus/Coarse</td>
<td>4, 8, 12%</td>
<td>12 - 26</td>
<td>66.3%</td>
</tr>
<tr>
<td>AI (2010)</td>
<td>Lab</td>
<td>9.5 mm Dense-Graded</td>
<td>4 – 11.5%</td>
<td>N/A</td>
<td>22.7%</td>
</tr>
</tbody>
</table>
Average Increase in Rut Depth for 1% increase in Air Voids

- AI 2010: 22.7%
- WT rc: 10.9%
- WT f/f+ /c: 7.3%
- WT rc: 66.3%
- WT oc: 9.6%
- WT f/f+: 11.5%

WT - 2002 WesTrack
Research from New Jersey

\[Y(\text{time}) = -1.1 \times \text{Air Voids} + 16.6 \]

\[R^2 = 0.32 \]
Enhanced Durability through Increased In-Place Pavement Density

- Assumption – Pavement density can be increased with a minimum of additional cost
- Long-Term Objective – States will increase their in-place asphalt pavement density requirements resulting in increased pavement life
Enhanced Durability through Increased In-Place Pavement Density

• A 1% increase in field density (1% less air voids) is claimed to increase asphalt pavement service-life 10+%! (conservatively)

• Today’s compaction target is typically 92% of maximum (G_{mm}) (8% air voids), with varying requirements for the area near the longitudinal joint
Enhanced Durability through Increased In-Place Pavement Density

• A 1% increase in field density (1% less air voids) is claimed to increase asphalt pavement service-life 10+%! (conservatively)

• Today’s compaction target is typically 92% of maximum (G_{mm}) (8% air voids), with varying requirements for the area near the longitudinal joint

![Increased Density Pavements](image)

• **Increased Density Pavements** target a 2% increase across the entire pavement!

• Just 2% more... makes a huge difference!
2003 AASHTO SOM Survey

Number of States

Minimum Mat Density (% of Gmm)

- 89.0%
- 89.5%
- 90.0%
- 90.5%
- 91.0%
- 91.5%
- 92.0%
- 92.5%
- 93.0%
- 93.5%
- 94.0%

FAA
NYSDOT Case Study

50 Series Comparison
2015 vs Previous 13 Year Average

Percentage of Lots

%MMTD

2002-2014
2015
1. Contact FHWA Division Engineers, discuss project goals and identify potential state participants.

2. Fund (FMIS) State Agency trials/reports on feasibility

3. On-site training (AI), Information search (NCAT), Conduct Webinars (NAPA)
Enhanced Durability of Asphalt Pavements through Increased In-Place Pavement Density

Demonstration projects (10)
Current Specifications (1 of 2)

• 4 States (MN, OK, PA, WI)
 • Minimum lot average
 • Set at 89.5, 90 to 92% of G_{mm}

• 2 States (DC, PA)
 • Minimum individual test
 • Set at 90 to 92% of G_{mm}
 • Note: G_{mb} used by 1 state
Current Specifications (2 of 2)

- **1 State (VA)**
 - Minimum control strip density
 - Lot average set at 90% of G_{mm}

- **5 States (AK, FL, IN, PA, WA)**
 - Percent within Limits (PWL)
 - Setting LSL and USL
 - LSL set at 91 to 92% of G_{mm}
 - Average generally 93 to 94% of G_{mm}
Experimental Plan

Control Section

Test Section #1

Test Section #2 (optional)
Unique Enhancements

• Support new specification or research (4 states)
• Incentives (3 states)
 • $ to achieve increased density
 • Partnering with contractor
• Mix adjustments (3 states)
• Additional rollers (2 states)
• IC rollers (2 states)
• SHRP2 IR scan (2 states)
• Statistical evaluation (1 state)
Increased Density Pavements

Planned Schedule

- By March 2016, 10 State projects were identified
- By December 2016, 10+ State highway agencies will host an “Increased Density” Asphalt Construction Workshop
 - SHA, Contractors, Equipment Supplies, and Academia
- By December 2016, 10 State highway agencies will place a “Increased Density “ Pavement Section
 - FHWA funding evaluations on existing pavement projects
- 2017, document number of states that modify existing standards
 - Goal 10+ states
THANK YOU……

and Questions

Enhanced Durability Through Increased In-Place Pavement Density