NCHRP Project 9-57

Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures

Sponsored by
National Cooperative Highway Research Program

Fujie Zhou
Dave Newcomb
The Need

• Volumetric Mix Design – Does it make sense when our materials have changed so much?

• Balanced Mix Design
 – Max. set by AC for 98% density
 – Max. AC set by rutting test (must be less than 98% density)
 – Min. AC set by cracking test
 – Optimum is between max. AC and min. AC
Types of Cracking

- Thermal
- Reflection
- Bottom-Up Fatigue
- Top-Down Fatigue
Outline

• Project Objectives/Tasks
• Workshop and Products
• Workshop Outcomes
• Experimental Designs
 – Ruggedness
 – Interlaboratory Study
• Validation Experimental Designs/Potential Sections
 – Thermal
 – Reflection
 – Top-Down
 – Bottom-Up
• Summary
Cracking Tests Workshop

• Goals
 – Select cracking tests for 4 cracking types
 – Identify potential field/APT test sections

• What we prepared for the workshop:
 – Interim report
 – Cracking test webinars
 – Cracking test booklet
 – 9 cracking test videos
Workshop Outcomes

<table>
<thead>
<tr>
<th>Items</th>
<th>Thermal Cracking</th>
<th>Reflection Cracking</th>
<th>Bottom-up Fatigue Cracking</th>
<th>Top-down Fatigue Cracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected cracking tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. DCT</td>
<td></td>
<td>1. OT</td>
<td>1. BBF</td>
<td>1. SCB at intermediate temp.</td>
</tr>
<tr>
<td>2. SCB-IL</td>
<td></td>
<td>2. SCB at intermediate temp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. SCB at low temp.</td>
<td></td>
<td>3. BBF</td>
<td></td>
<td>2. IDT-UF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key factors for designing field experimental test sections</th>
<th>1. Climate (temperature, moisture, solar radiation); 2. Traffic; 3. Pavement structure and subgrade; 4. Asphalt mixtures; 5. Existing pavement conditions for reflection cracking.</th>
</tr>
</thead>
</table>

| Potential field test sections | 1. LTPP; 2. SPS10; 3. MnRoad; 4. NCAT Test Track; 5. Test sections under NCHRP 9-55, 9-58, and 9-59. |
Selected Cracking Tests

• Disc Compact Tension (DCT)
• Semi-Circular Bending (SCB)
 – University of Minnesota – Low Temperature
 – Louisiana Transp. Research Center – Intermed. Temp
 – University of Illinois – Intermed. Temp
• Overlay Tester (OT)
• Indirect Tension Test (IDT)
• Bending Beam Fatigue (BBF)
Laboratory Evaluation

• Review Existing Information and Studies
 – SCB ILS - ASTM
 – Asphalt Institute
 – NCAT
 – MnDOT

• Available Test Equipment
• Ruggedness Testing
• Precision and Bias
Ruggedness Testing

- Purpose: Identify factors that influence test results and determine how closely they must be controlled.
- Sensitivity test on variables instead of materials.
- Example: SCB
 - Specimen thickness
 - Loading rate
 - Test temperature
 - Notch depth
 - Air voids
Interlaboratory Study

• Purpose: Determine repeatability and reproducibility of test method.
 – Repeatability – single operator
 – Reproducibility – multiple laboratories

• Test familiarization is important

• Test specimens from one laboratory
 – Virgin DGA with 19 mm NMAS
 – Virgin DGA with 9.5 mm NMAS
 – DGA with high binder replacement
Field Validation
Experimental Design

• Objective:
 – Validate Cracking Tests
 – Not Study Cracking Mechanisms

• Want to make sure cracking test differentiates mixes that will crack from those that will not.

• D-optimal Design
 – Full or even partial factorials not practical
 – D-opt: computer generated design that selects the best subset of factor-level combinations
 – Considers important effects with smaller number of observations
Field Validation
Experimental Design

• Consider Factors
 – Pavement Structure
 – Climate
 – Traffic
 – Mix Types
 – Binders

• Existing Facilities vs. New Sections
Field Validation

• Present Schedule
• Cost Estimate
• Material Quantities
• Provide Forensic Plan
Forensic Plan

- Is cracking present?
 - Yes: Perform visual inspection of site
 - Obtain:
 - As-builts for layer thicknesses
 - Mixture designs
 - QC/QA data
 - Material sources
 - No: Do not consider for forensic testing
- Is construction data available?
 - Yes: Perform GPR to determine layer thickness and if any voids or water are present
 - No: Perform visual inspection of site
- Could sub-layers be a primary contributor to cracking?
 - Yes: Perform FWD and other testing to determine strength of layers
 - No: Perform necessary field testing to identify cracking origin and mechanisms.
- Acquire field samples (cores) for lab testing
 - Can exact and/or similar raw materials be acquired?
 - Yes: Acquire materials and run appropriate lab testing to correspond with cracking type. Evaluate field correlation.
 - No: Summarize and report findings
Thermal Cracking

• Climate
 – Cold, few F-T cycles
 – Diurnal cycling

• Mix Types
 – DGA with spec binder
 – DGA Low PG-1 grade
 – SMA

• Pavement Structure
 – Thick: > 6 inches
 – Thin: ≤ 6 inches

• Traffic
 – High: > 300k ESAL/yr
 – Low: < 300k ESAL/yr
Thermal Cracking D-opt.

<table>
<thead>
<tr>
<th>Test section</th>
<th>Climate</th>
<th>Mixture</th>
<th>Structure</th>
<th>Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cold</td>
<td>DGA_Regular PG</td>
<td>Thick AC</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Cold</td>
<td>SMA</td>
<td>Thin AC</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>Cold</td>
<td>DGA_PG-Lower</td>
<td>Thin AC</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>Diurnal cycling regions</td>
<td>DGA_PG-Lower</td>
<td>Thick AC</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>Diurnal cycling regions</td>
<td>SMA</td>
<td>Thick AC</td>
<td>Low</td>
</tr>
<tr>
<td>6</td>
<td>Diurnal cycling regions</td>
<td>DGA_Regular PG</td>
<td>Thin AC</td>
<td>Low</td>
</tr>
</tbody>
</table>
Thermal Cracking

Thermal Cracking
Cold climate

Thermal Cracking
Dry, hot climate
Reflection Cracking

- Climate
 - Steady state warm
 - Diurnal temp cycling

- Existing Structure
 - Cracked AC/Gran Base
 - Cracked AC/CTB
 - JPCP with poor LTE
 - JPCP with good LTE

- Mix Type
 - DGA
 - Performance Mix (SMA, A-R, etc.)
 - Crack resistant (Strata, Texas CAM, etc.)

- Overlay Thickness
 - Thin: <2 in.
 - Thick: 2-6 in.

- Traffic: High (>300k ESAL/yr)
Reflection Cracking D-opt.

<table>
<thead>
<tr>
<th>Test section</th>
<th>Climate</th>
<th>Existing pavement type</th>
<th>Mixture</th>
<th>Overlay thickness</th>
<th>Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Steady state</td>
<td>Cracked AC/Granular base</td>
<td>DGA</td>
<td>≤ 50 mm (2 inches)</td>
<td>> 300,000 ESAL/year</td>
</tr>
<tr>
<td>2</td>
<td>Steady state</td>
<td>Cracked AC/CTB base</td>
<td>Special crack resistant mix</td>
<td>≤ 50 mm (2 inches)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Steady state</td>
<td>JPCP with low LTE</td>
<td>Performance mix</td>
<td>≤ 50 mm (2 inches)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Steady state</td>
<td>JPCP with high LTE</td>
<td>Special crack resistant mix</td>
<td>50–150 mm (2–6 inches)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Temperature cycling</td>
<td>Cracked AC/Granular base</td>
<td>Special crack resistant mix</td>
<td>≤ 50 mm (2 inches)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Temperature cycling</td>
<td>Cracked AC/CTB base</td>
<td>Performance mix</td>
<td>50–150 mm (2–6 inches)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Temperature cycling</td>
<td>JPCP with low LTE</td>
<td>DGA</td>
<td>50–150 mm (2–6 inches)</td>
<td></td>
</tr>
</tbody>
</table>
Temperature Cycling for Refl. Cracking
Bottom-up Fatigue

- **Climate**
 - High temp/moist cycling
 - All other

- **Traffic**
 - High: >300k ESAL
 - Low: ≤300k ESAL

- **Mix Type**
 - V. good resistance
 - Good resistance
 - Medium resistance
 - Poor resistance

- **Pavement Structure (AC < 6 in)**
 - AC/gran
 - AC/CTB

- **Subgrade**
 - Good
 - Poor
Bottom-up Fatigue

<table>
<thead>
<tr>
<th>Test section</th>
<th>Climate</th>
<th>Traffic</th>
<th>Mixture</th>
<th>Pavement structure</th>
<th>Subgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All others</td>
<td>High</td>
<td>Very good cracking resistance mix</td>
<td>AC/CTB base</td>
<td>Poor</td>
</tr>
<tr>
<td>2</td>
<td>High temperature/moisture cycling regions</td>
<td>High</td>
<td>Good cracking resistance mix</td>
<td>AC/granular base</td>
<td>Poor</td>
</tr>
<tr>
<td>3</td>
<td>All others</td>
<td>High</td>
<td>Medium cracking resistance mix</td>
<td>AC/granular base</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>High temperature/moisture cycling regions</td>
<td>High</td>
<td>Poor cracking resistance mix</td>
<td>AC/CTB base</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Low</td>
<td>Very good cracking resistance mix</td>
<td>AC/granular base</td>
<td>Good</td>
</tr>
<tr>
<td>6</td>
<td>All others</td>
<td>Low</td>
<td>Good cracking resistant mix</td>
<td>AC/CTB base</td>
<td>Good</td>
</tr>
<tr>
<td>7</td>
<td>High temperature/moisture cycling regions</td>
<td>Low</td>
<td>Medium cracking resistance mix</td>
<td>AC/CTB base</td>
<td>Poor</td>
</tr>
<tr>
<td>8</td>
<td>All others</td>
<td>Low</td>
<td>Poor cracking resistance mix</td>
<td>AC/granular base</td>
<td>Poor</td>
</tr>
</tbody>
</table>
Bottom-up Fatigue

Bottom-up cracking in high temperature region

Bottom-up fatigue cracking in moisture cycling region
Top-down Cracking

- **Climate**
 - Hard freeze, low solar
 - Hard freeze, high solar
 - No freeze, low solar
 - No freeze, high solar

- **Mix Type**
 - DGA coarse, high AV
 - DGA coarse, low AV
 - DGA fine, high AV
 - DGA fine, low AV

- **Traffic**
 - High (>300k ESAL/yr) fast
 - Low (<300k ESAL/yr) slow
 - High (>300k ESAL/yr) slow

- **Pavement:** ≥6 in.
Top-down Cracking D-opt

<table>
<thead>
<tr>
<th>Test section</th>
<th>Climate</th>
<th>Traffic</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hard Freeze, High Solar</td>
<td>Low volume, low speed</td>
<td>DGA fine, high AV</td>
</tr>
<tr>
<td>2</td>
<td>Hard Freeze, High Solar</td>
<td>High volume, low speed</td>
<td>DGA coarse, high AV</td>
</tr>
<tr>
<td>3</td>
<td>Hard Freeze, Low Solar</td>
<td>High volume, high speed</td>
<td>DGA fine, low AV</td>
</tr>
<tr>
<td>4</td>
<td>Hard Freeze, Low Solar</td>
<td>High volume, low speed</td>
<td>DGA fine, high AV</td>
</tr>
<tr>
<td>5</td>
<td>No Freeze, High Solar</td>
<td>High volume, high speed</td>
<td>DGA coarse, low AV</td>
</tr>
<tr>
<td>6</td>
<td>No Freeze, High Solar</td>
<td>Low volume, low speed</td>
<td>DGA coarse, high AV</td>
</tr>
<tr>
<td>7</td>
<td>No Freeze, High Solar</td>
<td>High volume, low speed</td>
<td>DGA fine, low AV</td>
</tr>
<tr>
<td>8</td>
<td>No Freeze, Low Solar</td>
<td>High volume, high speed</td>
<td>DGA fine, high AV</td>
</tr>
<tr>
<td>9</td>
<td>No Freeze, Low Solar</td>
<td>Low volume, low speed</td>
<td>DGA coarse, low AV</td>
</tr>
</tbody>
</table>
Available Facilities and Characteristics

<table>
<thead>
<tr>
<th>Items</th>
<th>APT</th>
<th>Full-scale test tracks</th>
<th>Full-scale Test Roads</th>
<th>In-service Pavements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>FHWA-ALF, Louisiana-LAF, CalTrans-HVS, Florida-HVS, Illinois-ATLAS, TxDOT-APT</td>
<td>WesTrack NCAT test track</td>
<td>MnRoad</td>
<td>LTPP-GPS/SPS sections and state DOT sections NCHRP Sections</td>
</tr>
<tr>
<td>Traffic load</td>
<td>Known traffic; well controlled traffic; often overloaded</td>
<td>Known traffic; WesTrack: 4 units of tractor/trailer – triple combinations NCAT Track: four fully loaded trucks</td>
<td>Known traffic; Real traffic</td>
<td>Unknown traffic (most of time); Real traffic; many SPS sections equipped with WIMs</td>
</tr>
<tr>
<td>Traffic speed</td>
<td>Slow; around 5-12 mph</td>
<td>Around 40-45 mph</td>
<td>Real traffic and real speed (around 60 mph)</td>
<td>Real traffic and real speed (around 60 mph)</td>
</tr>
<tr>
<td>Test period</td>
<td>Several months</td>
<td>one-three years</td>
<td>4 years</td>
<td>Several years to more than 15 years</td>
</tr>
<tr>
<td>Environment</td>
<td>Temperature is often controlled</td>
<td>Natural weather</td>
<td>Natural weather</td>
<td>Natural weather</td>
</tr>
<tr>
<td>Aging effect</td>
<td>Artificial aging can be considered, but not natural aging</td>
<td>Impact of short-term aging on performance is considered.</td>
<td>Impact of short/medium-term aging is considered</td>
<td>Impact of long-term aging is addressed</td>
</tr>
</tbody>
</table>
Want to know more about ASPHALT?

Join AAPT!

www.asphalttechnology.org/membership