Optimizing Laboratory Design for Five Percent Superpave (Superpave5)
History of Design Air Voids

- Marshall Mix Design
 - Set up in late 1940s
 - Design voids set at 3 to 5%

- Marshall Mix Compaction
 - “Standard” rolling train
 - Static Steel Wheel
 - Pneumatic tired
 - 8% will densify under traffic to 4%
 - “Density at end of life = Design Density”
Superpave Mix Design

- “Marshall” concept carried forward
 - Design air voids fixed at 4%
- Recommended compaction
 - Set at 92% Gmm
DENSITY AT END OF LIFE??

Compaction Caused by this
Typical As Constructed Density

NCHRP Report 573
Figure 4.6
Typical “Final” Density

Unchanged from 2 to 4 years

NCHRP Report 573
Figure 4.8

91.8% 94.6%
Superpave 5 Concept

- Mix Design: 5% air voids
- Field Compaction: 95% Gmm

- Higher design air voids
 - 5% instead of 4%
- No change in asphalt content

- Improve Durability
 - Lower air voids in the field
Purdue Experiment

- Three mix designs
 - 9.5-mm (3-10 million)
 - 9.5-mm (10-30 million)
 - 19.0-mm (10-30 million)
9.5-mm Mixture Design

<table>
<thead>
<tr>
<th></th>
<th>Trial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N100/4</td>
</tr>
<tr>
<td>P_b, %</td>
<td>5.9</td>
</tr>
<tr>
<td>P_{be}, %</td>
<td>4.7</td>
</tr>
<tr>
<td>V_a, %</td>
<td>4.1</td>
</tr>
<tr>
<td>VMA, %</td>
<td>15.0</td>
</tr>
<tr>
<td>VFA, %</td>
<td>72.3</td>
</tr>
</tbody>
</table>
9.5-mm Mixture Gradations

Percent Passing

Sieve Size raised to 0.45 power, mm

N100

Max Density Line
9.5-mm Mixture Gradations

Percent Passing

Sieve Size raised to 0.45 power, mm

N100

N70

Max Density Line
9.5-mm Mixture Gradations

Sieve Size raised to 0.45 power, mm

Percent Passing

N100
N70
N50
Max Density Line
9.5-mm Mixture Gradations

Percent Passing

Sieve Size raised to 0.45 power, mm

- N100
- N70
- N50
- N30
- Max Density Line
Rut Resistance Comparison

Number of Gyrations

Flow Number

- Number of Gyrations vs. Flow Number graph
- Data points for each group
- Group 5/5
- Group 4/7

Legend:
- Group 5/5
- Group 4/7
Laboratory Study Conclusions

- Designs at 5% Air Voids and 95% Gmm Compaction
 - Equal or Greater
 - Stiffness
 - Flow Number
 - Than designs at 4% Air Voids and 93% Gmm Compaction
Georgetown Road

- Reconstruction and widening
- Trial Mix
 - 19 mm
 - 330 lb/yd² (3 inches)
Paving Train
N30 (5% Air Void) Mix
N30 (5% Air Void) Mix
N30 (5% Air Void) Mix
Field Density Control
N30 (5% Air Void) Mix
Gradation (Plate Sample)

<table>
<thead>
<tr>
<th></th>
<th>Superpave5 (20141213)</th>
<th></th>
<th></th>
<th></th>
<th>Superpave4 (20141212)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMF</td>
<td>Sublot 1</td>
<td>Sublot 2</td>
<td></td>
<td>DMF</td>
<td>Sublot 1</td>
</tr>
<tr>
<td>25.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>19.0</td>
<td>95.2</td>
<td>97.9</td>
<td>97.7</td>
<td></td>
<td>95.3</td>
<td>98.2</td>
</tr>
<tr>
<td>12.5</td>
<td>80.5</td>
<td>84.5</td>
<td>91.4</td>
<td></td>
<td>82.1</td>
<td>86.3</td>
</tr>
<tr>
<td>9.5</td>
<td>68.8</td>
<td>73.8</td>
<td>82.5</td>
<td></td>
<td>73.0</td>
<td>76.2</td>
</tr>
<tr>
<td>4.75</td>
<td>42.1</td>
<td>48.0</td>
<td>54.7</td>
<td></td>
<td>47.0</td>
<td>51.6</td>
</tr>
<tr>
<td>2.36</td>
<td>30.1</td>
<td>33.7</td>
<td>37.9</td>
<td></td>
<td>32.6</td>
<td>35.3</td>
</tr>
<tr>
<td>1.18</td>
<td>20.6</td>
<td>22.8</td>
<td>25.5</td>
<td></td>
<td>20.8</td>
<td>22.6</td>
</tr>
<tr>
<td>0.600</td>
<td>14.5</td>
<td>15.9</td>
<td>17.6</td>
<td></td>
<td>13.9</td>
<td>15.3</td>
</tr>
<tr>
<td>0.300</td>
<td>9.5</td>
<td>10.4</td>
<td>11.2</td>
<td></td>
<td>9.4</td>
<td>10.0</td>
</tr>
<tr>
<td>0.150</td>
<td>6.8</td>
<td>7.1</td>
<td>7.8</td>
<td></td>
<td>6.9</td>
<td>7.0</td>
</tr>
<tr>
<td>0.075</td>
<td>5.8</td>
<td>5.3</td>
<td>6.0</td>
<td></td>
<td>5.7</td>
<td>5.4</td>
</tr>
</tbody>
</table>
QA Volumetric Properties

<table>
<thead>
<tr>
<th></th>
<th>Superpave5</th>
<th></th>
<th>Superpave4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMF</td>
<td>Sublot 1</td>
<td>Sublot 2</td>
<td>DMF</td>
</tr>
<tr>
<td>% Asphalt</td>
<td>4.8</td>
<td>4.44</td>
<td>4.76</td>
<td>4.6</td>
</tr>
<tr>
<td>Gmm</td>
<td>2.505</td>
<td>2.494</td>
<td>2.523</td>
<td></td>
</tr>
<tr>
<td>Gmb 1</td>
<td>2.366</td>
<td>2.368</td>
<td>2.411</td>
<td></td>
</tr>
<tr>
<td>Gmb 2</td>
<td>2.358</td>
<td>2.365</td>
<td>2.411</td>
<td></td>
</tr>
<tr>
<td>Air Voids 1</td>
<td>5.0</td>
<td>5.5</td>
<td>5.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Air Voids 2</td>
<td>5.0</td>
<td>5.9</td>
<td>5.2</td>
<td>4.0</td>
</tr>
<tr>
<td>VMA 1</td>
<td>15.1</td>
<td>14.4</td>
<td>14.6</td>
<td>13.4</td>
</tr>
<tr>
<td>VMA 2</td>
<td>15.1</td>
<td>14.6</td>
<td>14.7</td>
<td>13.4</td>
</tr>
</tbody>
</table>
QA Core Density

<table>
<thead>
<tr>
<th></th>
<th>Superpave5</th>
<th></th>
<th>Superpave4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMF</td>
<td>Sublot 1</td>
<td>Sublot 2</td>
<td>DMF</td>
</tr>
<tr>
<td>Gmm</td>
<td>2.513</td>
<td>2.496</td>
<td></td>
<td>2.521</td>
</tr>
<tr>
<td>Core Gmb 1</td>
<td>2.423</td>
<td>2.360</td>
<td></td>
<td>2.352</td>
</tr>
<tr>
<td>Core Gmb 2</td>
<td>2.419</td>
<td>2.418</td>
<td></td>
<td>2.333</td>
</tr>
<tr>
<td>Ave % Gmm</td>
<td>96.3</td>
<td>95.7</td>
<td></td>
<td>92.9</td>
</tr>
</tbody>
</table>
Loose Research Samples
Research Cores
Testing

- Permeability
- Hamburg Rut Testing
 - Short term aged
 - Long Term Aged
- SCB
 - Short term aged
 - Long Term Aged
Next Step

- Superpave5 mix design set at 50 gyrations
 - Develop Trial Specification

- Let project(s) with Superpave5 specifications
 - Determine Acceptance Tolerances
 - Air voids
 - VMA
 - Density
Thank You

Greetings from Billy Bob