

### NCHRP 9-49A Project Performance of WMA Technologies: Stage II Long-term Field Performance

Haifang Wen and Shenghua (Edward) Wu Asphalt Mixture ETG Meeting Fall Rivers, MA

April 8, 2015

# **Project Information**

- Project Duration: 05/2011-05/2016
- Project Team:
  - □ Haifang Wen, PI
  - Shihui Shen, Co-PI (PSU-Altoona)
  - Louay Mohammad, Co-PI (LTRC)
  - □ Bloom Companies Field Distress Survey
  - □ Braun Intertec Field Cores, FWD

# Outline

- Background & Objectives
- Projects Overview & Tests
- Field Performance & Significant Determinants
  - Transverse cracking
  - Top-down longitudinal cracking
  - Rutting
- Summary and Future Work

## Background

#### • WMA categories:

- Wax additives: e.g. Sasobit
- Chemical additives: e.g. Evotherm
- □ Foaming: Water-based (Astec DBG, Ultrafoam)

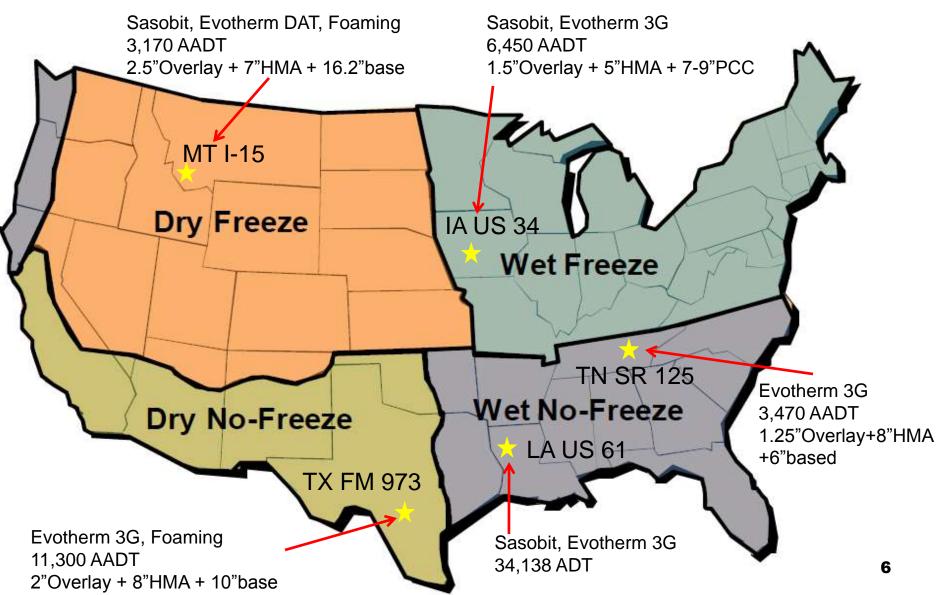
Water containing (Aspha-min, Advera, Rediset)

#### How about the long-term field performance?

- Potential issues (rutting, moisture susceptibility, etc)
- Lack of sufficient data

Significant material and engineering property (determinants) to characterize WMA long-term performance?

# **Research Objectives**


- To identify the material and engineering properties of WMA pavements that are <u>significant determinants</u> of their long-term field performance, and
- To recommend <u>best practices</u> for the use of WMA technologies.

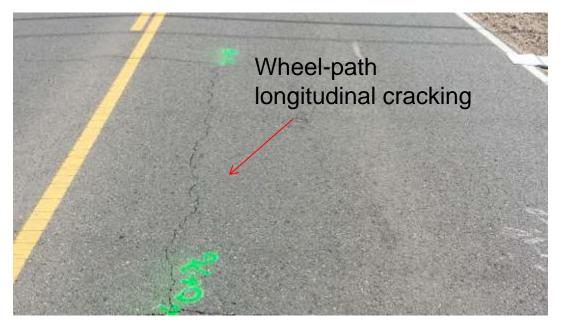
# Outline

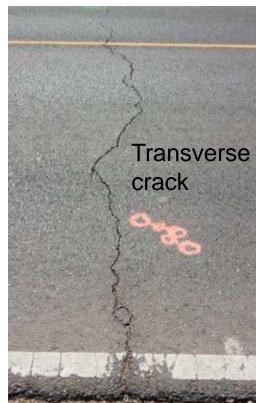
- Background & Objectives
- Projects Overview & Tests
- Field Performance & Significant Determinants
  - Transverse cracking
  - Top-down longitudinal cracking
  - Rutting
- Summary and Future Work

#### New Pavement Project (2011/2012)

#### 5 Projects = 10 HMA-WMA pairs




#### **In-service Pavement Project**


Different Ages, structures, traffic, material types, RAP content



## **Field Distress Survey**

- 1<sup>st</sup> round (2012), 2<sup>nd</sup> round (2014/2015)
- LTPP distress identification manual: cracks, rut depth
- Cores taken at the tip of crack
- Three 200-feet segments





#### **Field Cores Test Summary**

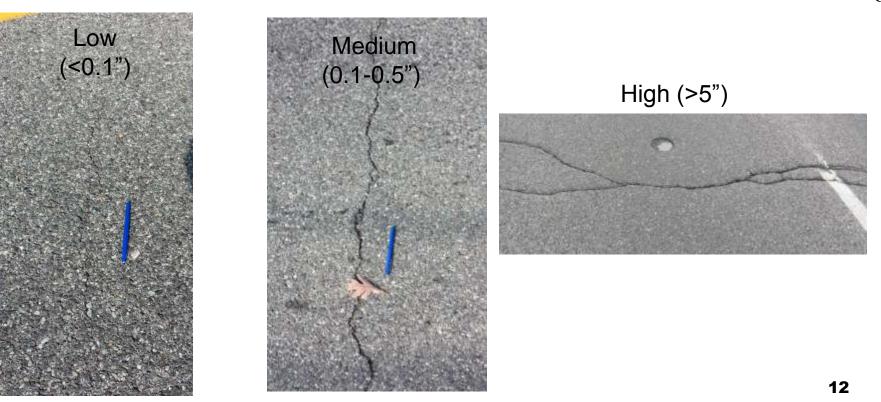
| Mixture<br>Test        | IDT Dynamic<br>Modulus/Creep<br>Compliance                                                        | Fatigue-<br>IDT Fracture at Room<br>Temp                                                                 | Thermal Cracking-IDT<br>Fracture at Low Temp                                                          | Rutting/Moist<br>ure-<br>Hamburg                        |
|------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Testing<br>Conditions  | Temp.: -4, 14, 32, 50,<br>68, 86°F;<br>Frequency: 20, 10, 5,<br>1, 0.1, 0.01 Hz<br>Duration: 100s | Temp.: 68°F<br>Loading rate: 2 in./min                                                                   | Temp.: 14°F<br>Loading rate: 0.1<br>in./min                                                           | Temp.: 122°F<br>Wet condition                           |
| Material<br>Properties | Dynamic modulus;<br>Creep compliance                                                              | IDT strength;<br>Fracture work density;<br>Vertical failure<br>deformation;<br>Horizontal failure strain | IDT strength;<br>Fracture work density;<br>Vertical failure deformation;<br>Horizontal failure strain | Rut depth;<br>Stripping<br>inflection<br>point<br>(SIP) |
| Reference<br>s         | Wen & Kim (2002)<br>AASHTO T322                                                                   | Wen (2012)                                                                                               | Wen (2012)                                                                                            | AASHTO<br>T324                                          |
|                        |                                                                                                   | Load                                                                                                     | Peak Stress<br>Fracture<br>Work<br>Vertical Displacement<br>Vertical Failure Deformation              | 9                                                       |

### **Binder Test Summary**

| Binder Test            | PGs                                                   | Rutting: MSCR                                                                    | Fatigue: Monotonic<br>at Room Temp                       | Thermal Cracking:<br>Monotonic at Low<br>Temp            |
|------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Testing<br>Conditions  | Different temp<br>depending on the<br>test (DSR, BBR) | Load: 0.1, 3.2kPa<br>Temp.: high<br>pavement temp<br>98% reliability             | Temp.: 68°F<br>Shear strain rate:<br>0.3 s <sup>-1</sup> | Temp.: 41°F<br>Shear strain rate:<br>0.01s <sup>-1</sup> |
| Material<br>Properties | PG;<br>BBR stiffness;<br>m-value                      | Jnr <sub>0.1</sub> , Jnr <sub>3.2</sub> ;<br>R <sub>0.1</sub> , R <sub>3.2</sub> | Maximum stress;<br>Fracture energy;<br>Failure strain    | Maximum stress;<br>Fracture energy;<br>Failure strain    |
| References             | AASHTO<br>MP1/T240/T313                               | AASHTO T350                                                                      | Wen et al. (2010)                                        | Wen (2010)                                               |
|                        |                                                       | She                                                                              |                                                          | ture energy<br>ailure strain<br>Shear Strain             |

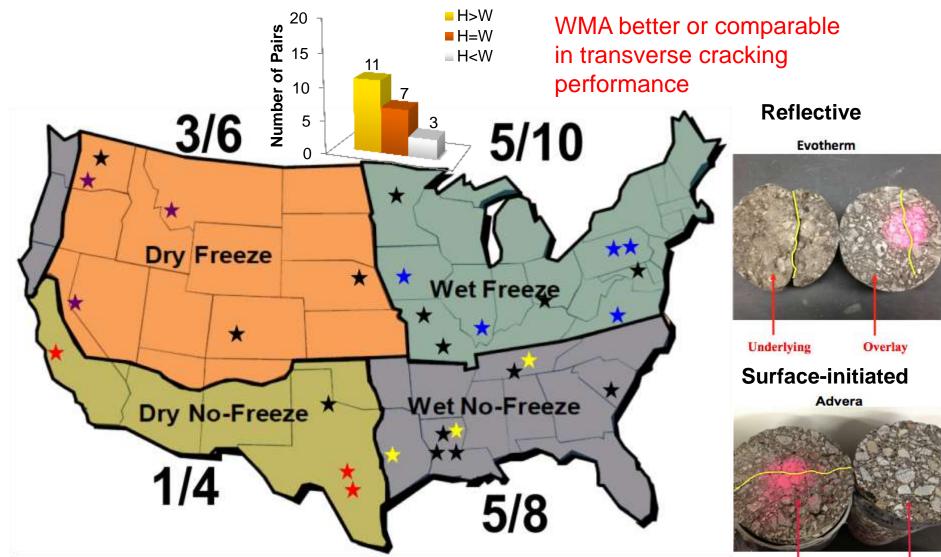
# Outline

- Background & Objectives
- Projects Overview & Tests


Field Performance & Significant Determinants

- Transverse cracking
- Top-down longitudinal cracking
- Rutting
- Summary and Future Work

## Transverse Crack Length Comparison


- Weighted or Unweighted? (consider crack severity)
  - Use weighted factor (Wu et al. 2010 FHWA report)

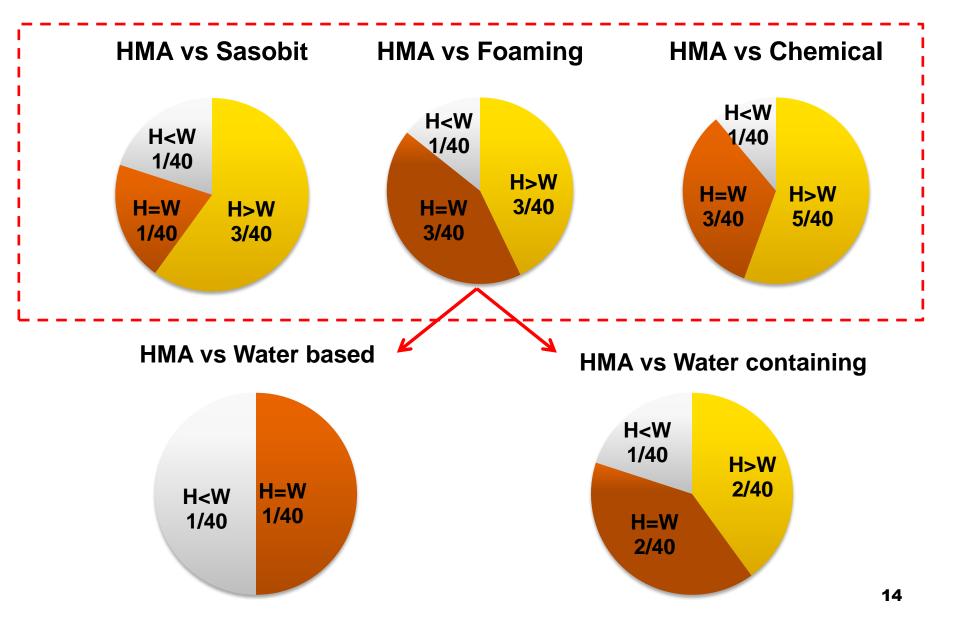
 $TotalCrack = 1.0 \times Crack_{low} + 3.4 \times Crack_{medium} + 7.7 \times Crack_{high}$ 



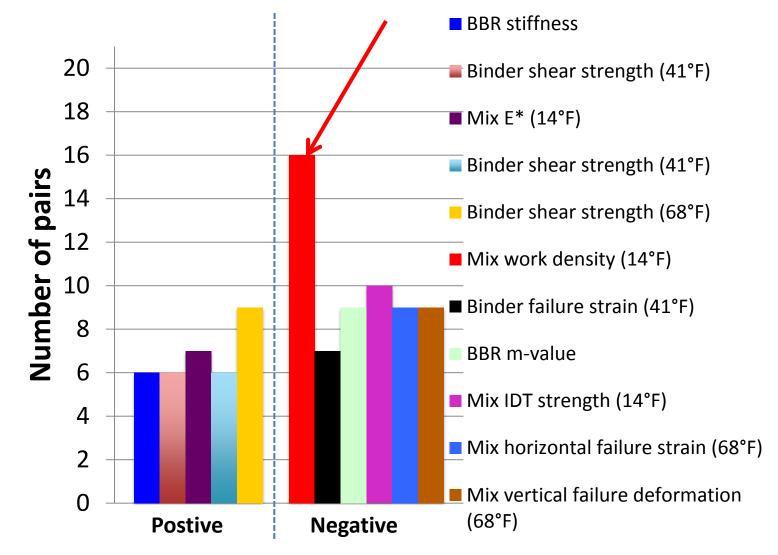
#### HMA/WMA Transverse Cracking Comparison (1<sup>st</sup> Survey)

#### 14 out of 24 projects exhibited transverse cracking (21 H-W pairs)




Underlying

13


Overlay

Note: H>W: HMA has more cracking than WMA

#### **Transverse Cracking Comparison in terms of WMA Technology**



# Significant Determinants for Transverse Cracking (1<sup>st</sup> Round Survey) 16 out of 21 pairs



#### Transverse Cracking Regression Model

#### $TC = 540.64 - 1846.17FWD + 0.019T_{low} - 185.00D_{OL} + 0.29D_{HMA}$

Field Measu

100.0

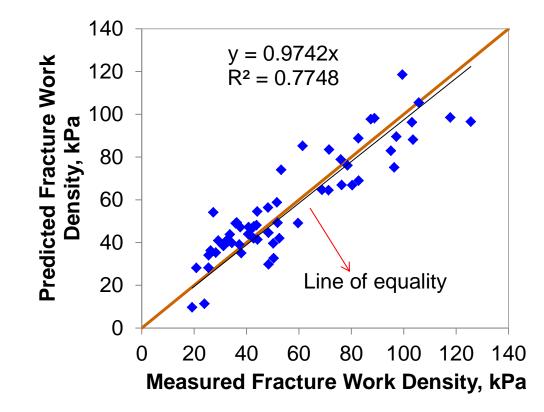
0.0

0.0

100.0

| r                |                                                                                                                                                |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ТС               | Transverse cracking length, ft/200ft segments                                                                                                  |  |  |
| FWD              | Mixture fracture work density tested at 14°F, MPa                                                                                              |  |  |
| T <sub>low</sub> | 8-year low temperature hour, (the total hours of low temperature below 15°F, direct output from Pavement ME based on the location of the site) |  |  |
| D <sub>OL</sub>  | Overlay thickness, in.                                                                                                                         |  |  |
| D <sub>HMA</sub> | Total HMA thickness, in.                                                                                                                       |  |  |
|                  | 500.0<br>400.0<br>y = 1x<br>$R^2 = 0.60$<br>Line of Equality                                                                                   |  |  |

200.0 300.0 400.0 500.0


Predicted Transverse Cracking, ft.

# Implementation of the Use of Significant Determinants in Mix Design

| FWD = -291.38+0.387VFA+66.7 | $4G_{se} + 8.08\varepsilon_{b} + 15.76P_{b} + 2.97P_{50}$ |
|-----------------------------|-----------------------------------------------------------|
|-----------------------------|-----------------------------------------------------------|

| Parameter       | Description                             | P-value |
|-----------------|-----------------------------------------|---------|
| FWD             | mixture fracture work density 14°F, kPa |         |
| VFA             | Voids filled with asphalt               | 0.006   |
| G <sub>se</sub> | aggregate effective specific gravity    | 0.006   |
| ε <sub>b</sub>  | binder failure strain tested at 41°F    | 0.000   |
| P <sub>b</sub>  | asphalt content, %                      | 0.000   |
| P <sub>50</sub> | percentage passing No. 50 sieve size    | 0.000   |

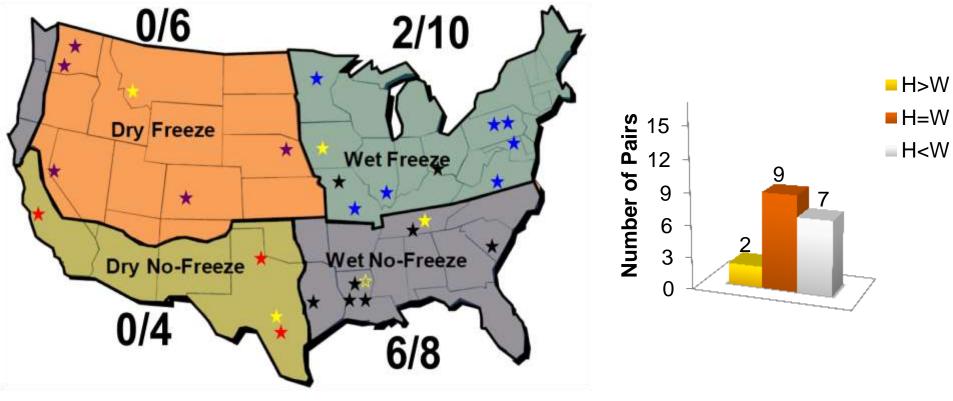
#### **Measured Vs Predicted Fracture Work Density**



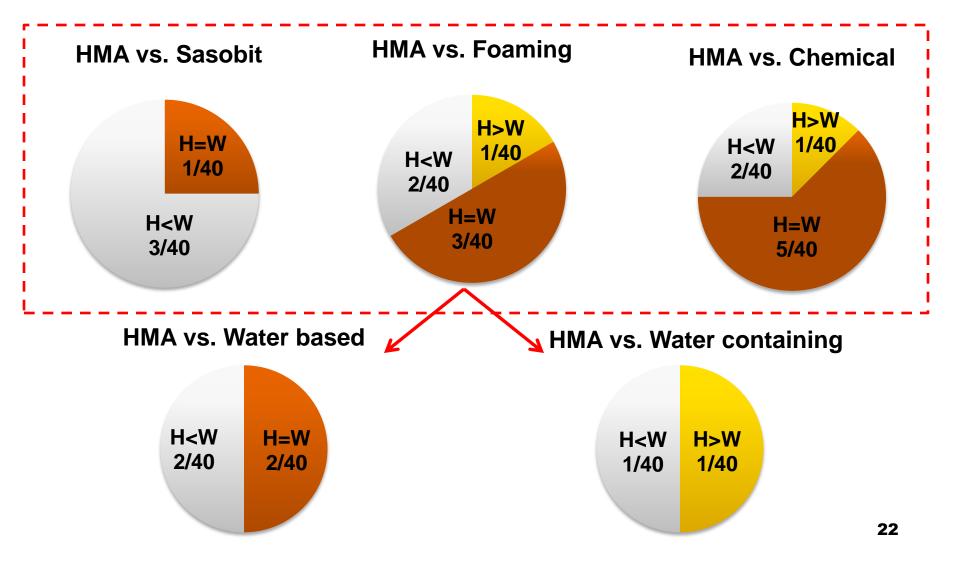
# Outline

- Background & Objectives
- Projects Overview & Tests
- Field Performance & Significant Determinants
  - Transverse cracking
  - Top-down longitudinal cracking
  - Rutting
- Summary and Future Work

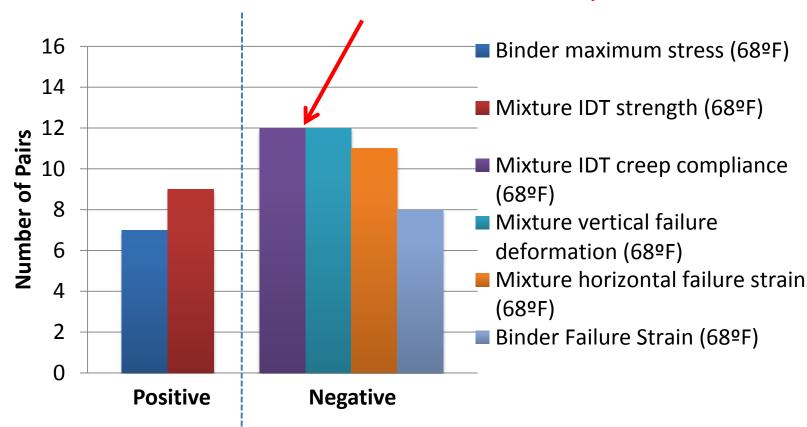
#### Top-down Longitudinal Cracking (Wheel-path)




/ Surface-initiated


#### HMA/WMA Top-down Cracking Comparison (1<sup>st</sup> Round)

8 out of 24 projects exhibited top-down longitudinal cracking (18 H-W pairs).

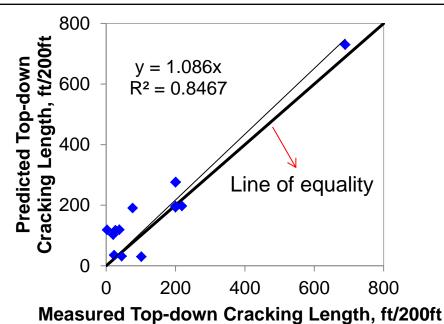

HMA better or comparable in top-down fatigue cracking performance



#### Top-down Longitudinal Cracking Comparison in terms of WMA Technologies (1<sup>st</sup> Round)



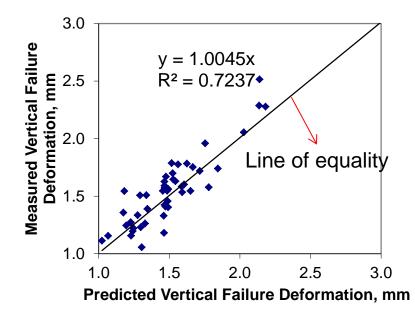
#### Significant Determinants for Top-down Longitudinal Cracking (1<sup>st</sup> Round)




12 out of 17 HMA/WMA pairs

## **Top-down Cracking Regression Model**

#### LC = -1514.14 + 129.86Age - 16.55VFD + 107.84 DOL + 0.012AADT + 0.075UV

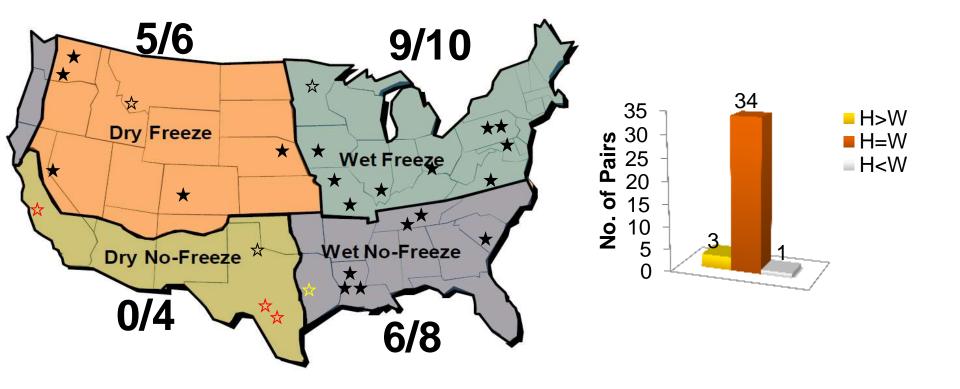

| LC              | top-down longitudinal crack length, ft/200-ft segment                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|
| Age             | Service years                                                                                                            |
| VFD             | vertical failure deformation of mix tested at 68°F, mm                                                                   |
| D <sub>OL</sub> | Overlay thickness, in.                                                                                                   |
| AADT            | Average annual daily traffic                                                                                             |
| UV              | cumulative UV index during the service period, obtained from the National Oceanic and Atmospheric Administration (NOAA). |



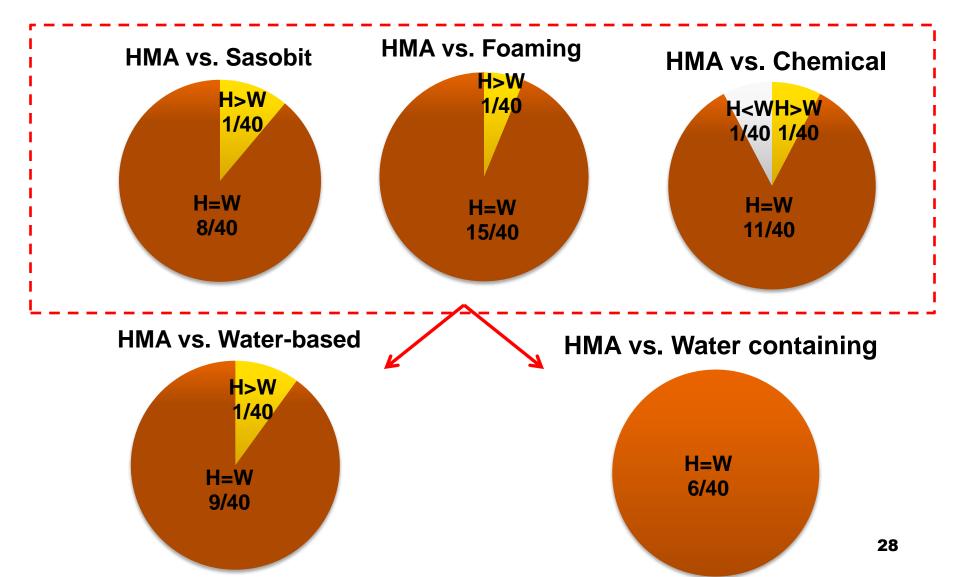
# Implementation of the Use of Significant Determinants in Mix Design

 $VFD = 1.65 - 0.034PG_{inter} + 0.01VFA + 0.009P_{16}$ 

| Parameter           | Description                                   | P-value |
|---------------------|-----------------------------------------------|---------|
| VFD                 | Mixture vertical failure deformation 68°F, mm |         |
| PG <sub>inter</sub> | Binder intermediate temperature PG            | 0.000   |
| VFA                 | Void filled with asphalt                      | 0.013   |
| P <sub>16</sub>     | Percentage passing No. 16 sieve size          | 0.027   |

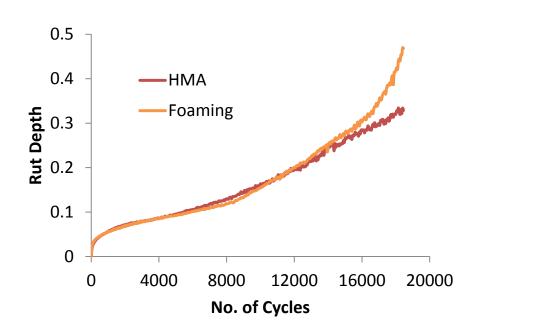



# Outline


- Background & Objectives
- Projects Overview & Tests
- Field Performance & Significant Determinants
  - Transverse cracking
  - Top-down longitudinal cracking
  - Rutting
- Summary and Future Work

#### HMA/WMA Rut Depth Comparison (2<sup>nd</sup> Round)

- Use 1/16" to compare averaged rut depth of HMA and WMA pavements




#### Rut Depth Comparison in terms of WMA Technologies (2<sup>nd</sup> Round)



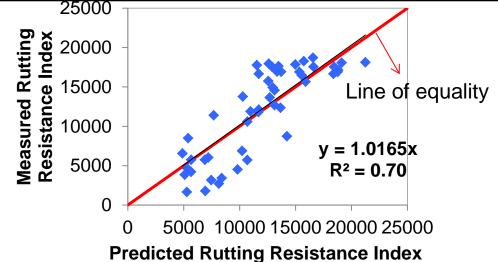
## **Rutting Resistance Index (RRI)**

RRI = No. of Cycles  $\times$  (1- Rut Depth)





(1) Good rutting performance: 0.1 in. @ 20,000 cycles, RRI=18,000


- (1) Average rutting performance: 0.5 in. @ 20,000 cycles, RRI=10,000
- (1) Poor rutting performance: 0.5 in. @10,000 cycles, RRI=5,000

#### **Significant Determinants for Rutting Performance** (2<sup>nd</sup> Round) 30 out of 32 HMA/WMA pairs Jnr0.1 32 Inr3.2 28 Mix creep 24 compliance (86°F) Hamburg Rutting **No. of Pairs** 10 10 12 20 **Resistance Index R0.1 R3.2** Binder high temp PG 8 Binder low temp PG 4 Mix E\* (86°F) 0 Positive Negative

#### Implementation of the Use of Significant Determinants in Mix Design

 $RRI = 3700.555 + 2187.602P_{100} + 122.027R_{3.2} - 323.71P_{16} - 73.374VFA + 2054.665P_{ba}$ 

| Parameter        | Description                                | P-value |
|------------------|--------------------------------------------|---------|
| RRI              | Rutting resistance index                   |         |
| P <sub>100</sub> | Percentage passing No. 100 sieve           | 0.000   |
| R <sub>3.2</sub> | Binder percent recovery of binder @3.2 kPa | 0.000   |
| P <sub>16</sub>  | Percentage passing No. 16 sieve size       | 0.000   |
| VFA              | voids filled with asphalt                  | 0.003   |
| P <sub>ba</sub>  | asphalt binder absorption                  | 0.013   |



# Outline

- Background & Objectives
- Projects Overview & Tests
- Field Performance & Significant Determinants
  - Transverse cracking
  - Top-down longitudinal cracking
  - Rutting
- Summary and Future Work

## **Conclusions:** Transverse Cracking

- Transverse crack may result from a combination of thermal cracking and reflective cracking.
- WMA shows better or comparable transverse cracking performance than HMA.
- Mixture work density (14°F) is found to be a significant determinant of transverse cracking in overlay.
- For implementation, if a mix has a ductile binder, relatively more asphalt, contain more aggregate passing No.50 sieve, and hard aggregate, the mix is more crack resistance.

## **Conclusions:** Top-down cracking

- Most of the cracks in the wheel path are surface-initiated, indicating that these cracks are top-down fatigue cracking.
- HMA shows better or comparable top-down cracking performance than WMA.
- The mixture vertical deformation obtained from IDT tests (68°F) are found to be the significant determinants of top-down fatigue cracking.
- For implementation, if a mix has relatively lower intermediate PG, higher VFA, and more % passing No.16 sieve, the mix has better top-down cracking resistance.

## Conclusions: Rutting

- HMA and WMA show comparable rutting performance.
- Mixture rutting resistance index is a good indicator for rutting performance.
- If a mix has a rutting-resistant binder (higher R<sub>3.2</sub>), relatively lower VFA (dry mix), less aggregate passing No.16 and more passing No.100 (like SMA), a relatively higher binder absorption rate, the mix is more rutting resistance.

## **Future Work**

Data analysis on the 2<sup>nd</sup> round field distress survey results

- Testing on new-pavement project (2<sup>nd</sup> round sampling)
- Validation of previous findings

## Acknowledgements

NCHRP (09-49A) for Sponsoring the Study

#### Team Members

Haifang Wen - Washington State University (Prime)

- Louay Mohammad Louisiana State University
- Shihui Shen Penn State University at Altoona
- Braun Intertech
- Bloom Companies

### State Highway Agencies

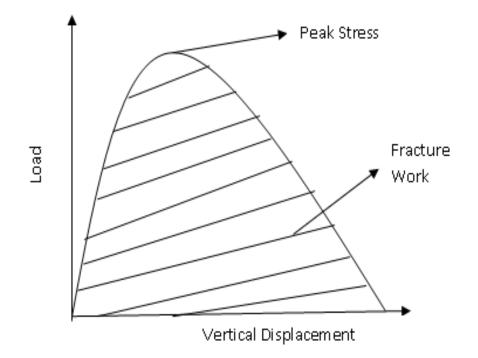
# Thank You! Any questions?

### How to compare based on what criteria?

- High variation of crack in three segments
- t-test may overshadows the difference
- Dual criterion

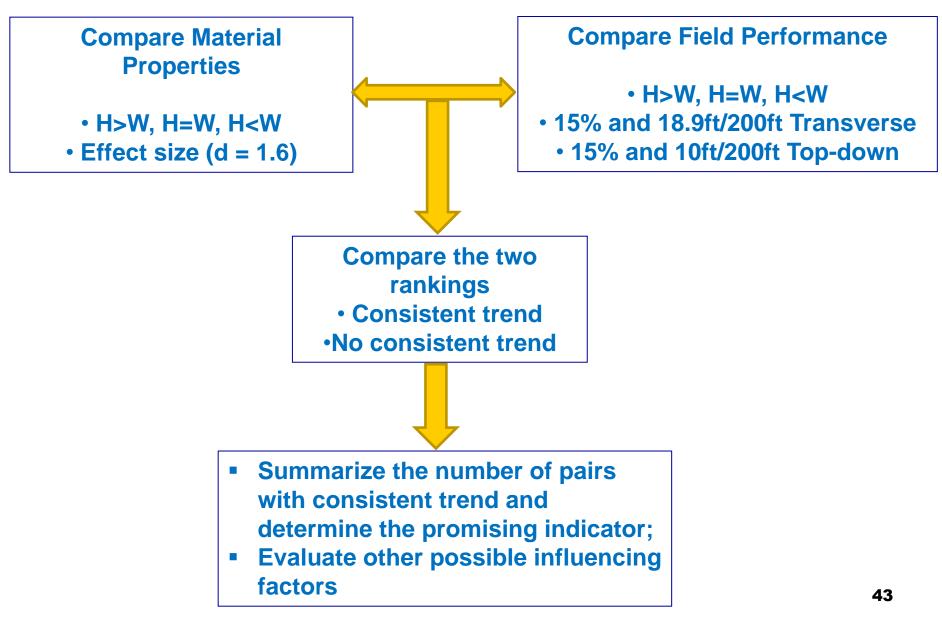
(1) Absolute difference: 18.9ft/ 200ft(2) Difference ratio: 15%

For example: HMA: 114.7 ft/200ft WMA: 71.7 ft/200ft


(1) Absolute difference = 114.7-71.7=43 > 18.9
(2) Difference ratio = (114.7-71.7)/93.2\*100=46.2% > 15%

Crack length: HMA > WMA

#### Significant Determinants of Transverse Cracking **Compare Field Performance Compare Material Properties** • H>W, H=W, H<W 15% and 18.9ft/200ft Transverse • H>W, H=W, H<W 15% and 10ft/200ft Top-down • Effect size (d = 1.6) **Compare the two** rankings Consistent trend No consistent trend Summarize the number of pairs with consistent trend and determine the promising indicator; **Evaluate other possible influencing** factors 41


## **Fracture Work Density**

 $Fracture \ Work \ Density = \frac{Fracture \ Work}{Volume \ of \ Specimen}$ 



The higher fracture work density, the better transverse cracking resistance.

#### **Significant Material Properties Determination Procedure**

