NCHRP 9-59 Update

May 10, 2018 FHWA ETG Fall River, MA

Advanced Asphalt Technologies, LLC

"Engineering Services for the Asphalt Industry"

Binder rheology
Strain capacity, failure envelope
Mixture vs binder performance
Delta Tc, GRP, DENT, extended BBR
Summary, conclusions

NCHRP 9-59 Objective

The primary objective of NCHRP 9-59 is to develop a test or tests that will help to effectively and efficiently control the properties of asphalt binders that contribute to the fatigue resistance of asphalt mixtures

Problem

ME State Rt 163 Presque Isle - Mapleton Severe raveling 10yr (thru wearing course at 5 yr)

Hwy 41 North of Kaladar (1999)

Hesp et al., Proceedings CTAA, 2009

Bill Ahearn, Pamela Marks, Simon Hesp

What is causing these failures? Problem binders **Excessive brittleness** Poor healing Misleading BBR grading Delta Tc, R-value, GRP and DENT are all indicators of the same problem

Over last month...

Further progress made in data analysis since TAI meeting in Savannah

- Slight change in assumed failure envelope significantly improved results
- May be a few more changes as final report is compiled and reviewed...

Binders included in NCHRP 9-59

- NCHRP 9-59, 8 polymer modified, 8 non-polymer modified
- 2 REOB, 2 oxidized, 1 PPA
- RTFOT + 40 hour PAV
- SHRP binders, RTFOT aging
- ALF, MNRoad, Westrack binder, miscellaneous aging

Binder Tests DSR / master curve DSR / linear amplitude sweep (LAS) Double-edge notched tension (DENT) Various tests from previous research

Mixture tests

Flexural fatigue Uniaxial fatigue Healing Loose mix aging, 95 C for 5 days Various tests from previous research

Binder rheologic type and R value

Some notes on R-value

Polymer modified binders and heavily aged non-modified binders are rheologically complex

R can be calculated from a DSR point measurement as long as |G*| is about 10 MPa or higher:

$$R = log(2) \frac{log(|G *|/1 \times 10^{9})}{log(1 - \delta/90)}$$

Asphalt Binder Failure Envelope

Fatigue/fracture performance ratio FFPR

- FFPR is an indicator of inherent fracture and fatigue resistance
- FFPR >> 1 indicate good fatigue performance, FFPR << 1 indicate poor performance
- For the binder studied in NCHRP 9-59, FFPR values ranged from about 0.4 to 2.

$N_{f}^{\wedge} = \left[\frac{FFPR_{i} \times FSC^{*} \times (VBE/100)}{\varepsilon_{t}}\right]^{k_{1}(90/\delta)}$

GFTAB model

FFPR represents the overall strain tolerance of each binder. FSC is the typical failure strain at any given |G*|. K1 was found to be 2.08.

Results of GFTAB model

Is GFTAB for real?

SHRP AAD-1: Fatigue exponents at different temps

SHRP AAD-1: Fatigue exponent vs. phase angle

Mixture Fatigue FFPR and Binder R-value

- SHRP (non-modified)
- BBF non-modified
- BBF polymer modified
- Uniaxial non-modified
- Uniaxial polymer modified

ENT/Extension FFPR and Binder R-value

- SHRP (non-modified)
- NCHRP 9-59 nonmodified
- NCHRP 9-59 polymermodified

Mixture fatigue FFPR vs DENT/Extension FFPR

- SHRP (non-modified)
- BBF non-modified
- BBF polymer modified

Uniaxial non-modified

 Uniaxial polymer modified

Mixture fatigue FFPR vs LAS FFPR

- SHRP (non-modified)
- BBF non-modified
- BBF polymer modified
- Uniaxial non-modified
- Uniaxial polymer modified

DENT extension vs G*

NPFS 776: TSRST Strength and R-value

Pavement fatigue life and R-value

Simple LEA analysis with constant sub-base/sub-grade properties, 100-mm pavement What about ΔTc ? Glover-Rowe Parameter? DENT test? Extended BBR/physical hardening?

ΔTc and R-value

△Tc and R-value are directly related, and both indicate rheologic type and strain tolerance

GRP and DENT extension

Of all rheological parameters examined, GRP has the best correlation to DENT extension

Modulus, R-value and FSC

GRP, R-value and FSC

Extended BBR/ physical hardening

Data from Kanabar, 2010

Extended BBR/ physical hardening Physical hardening increases with increasing $\Delta Tc / R$ -value For high $\Delta Tc/R$ the BBR will overestimate m-value Not only are these binders brittle, their BBR grades are lower than they should be...

Can we adjust Tc for physical hardening using R?

 $N_{f} [(FSC/\varepsilon_{t}) \times (VBE/100)]^{2.08(90/\delta)}$

Adhesive Healing

Adhesive healing

- Absolute healing increases with increasing phase angle
- Since phase angle at a given modulus decreases with increasing R, binders with high R values will show less healing
- Maximum net damage at 10 to 20 MPa, increases with increasing R

Rheologic type can be specified in several ways

R-value

- Calculated from DSR, G* apx. 10 Mpa

Calculated from BBR

- DSR minimum phase angle at G* = 10 MPa for example
 - BBR, maximum S at m 0.3, for example

National Center for Asphalt Technology NCAT AUBURN UNIVERSITY

BBR, maximum ΔTc

Polymer-modified binders

High R-values appear to be as bad or worse for the performance of polymermodified binders as for non-modified ones

Probably need similar control of R for all binders

Level of modification should be controlled primarily through high temperature spec

Summary

- Binders with high R-values are a "triple whammy"
 - Increased brittleness
 - Decreased adhesive healing
 - Errors in BBR grading

(might want a minimum R too)

Remaining work Draft final report is being compiled Completion of validation testing Related work being done as part of NCHRP 9-60 (binder manufacture/pavement performance/specifications) and NCHRP 9-61 (binder aging)

Acknowledgements NCHRP The Project Panel **Industry suppliers** Nam Tran and his associates at NCAT My associates at AAT

