NCHRP Project 20-07 / Task 400

Effect of Elevation on Rolling Thin Film Oven Aging of Asphalt Binder

Ramon Bonaquist, P.E. Advanced Asphalt Technologies, LLC

Advanced Asphalt Technologies, LLC

Lots of Help

- Dave Anderson
- Jim Rosenberger
- Gayle King
- John Malusky
- Shauna Teclemariam
- Volunteer Labs
- Binder Suppliers

Advanced Asphalt Technologies, LLC

Outline

- Review Objectives
- Review Approach
- Review Findings of Statistical Analysis
- Effect of Conditioning Time of Properties of RTFOT Residue
- Present Final Experimental Design
- Update Status

Advanced Asphalt Technologies, LLC

Objectives

 Confirm or refute previous studies showing an elevation effect in properties of RTFOT residue

And if there is an effect and it is of engineering significance then....

 Improve the AASHTO T 240 procedure to minimize differences in physical properties of RTFOT residue obtained at different elevations.

Advanced Asphalt Technologies, LLC

Approach

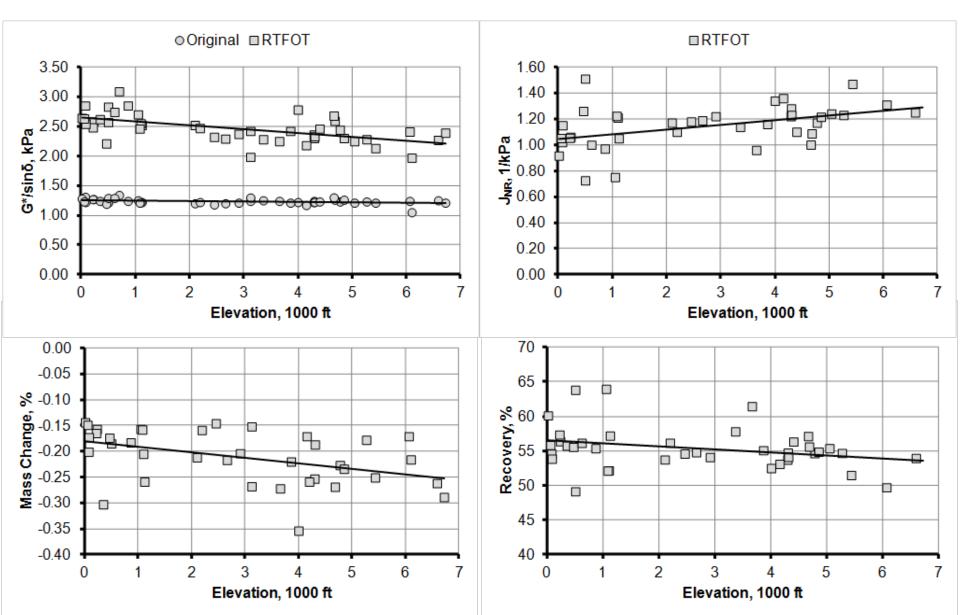
- Perform statistical and engineering analysis of available data:
 - Western Cooperative Testing Group
 - AASHTO Resource Proficiency Samples
- Select method to minimize elevation effect
- Design, execute, and analyze an experiment to confirm viability of the selected method
- Prepare documentation
 - Recommended modifications to AASHTO T 240 with commentary
 - Report with data files

Advanced Asphalt Technologies, LLC

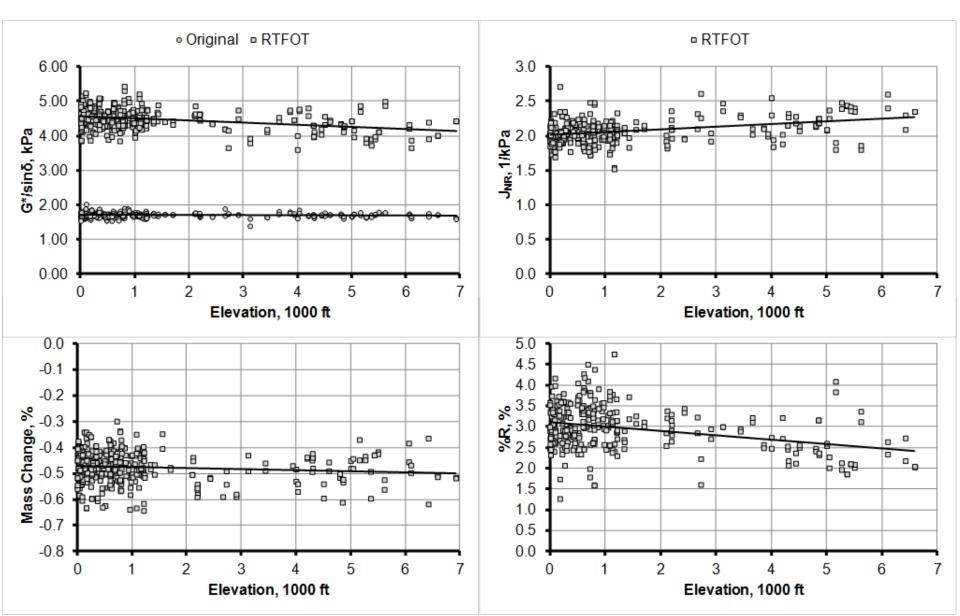
Statistical Analysis

- Western Cooperative Testing Group
 - 11 binders, 1 neat, 10 modified
 - 40 labs, 1 replicate
 - 441 observations
 - 12 to 6,720 ft elevation range (uniform distribution)
- AASHTO Resource
 - 4 binders, 2 neat, 2 modified
 - 213 labs, 2 replicates
 - 1700 observations
 - 0 to 6,295 ft elevation range (68 % below 1,000 ft)

Advanced Asphalt Technologies, LLC

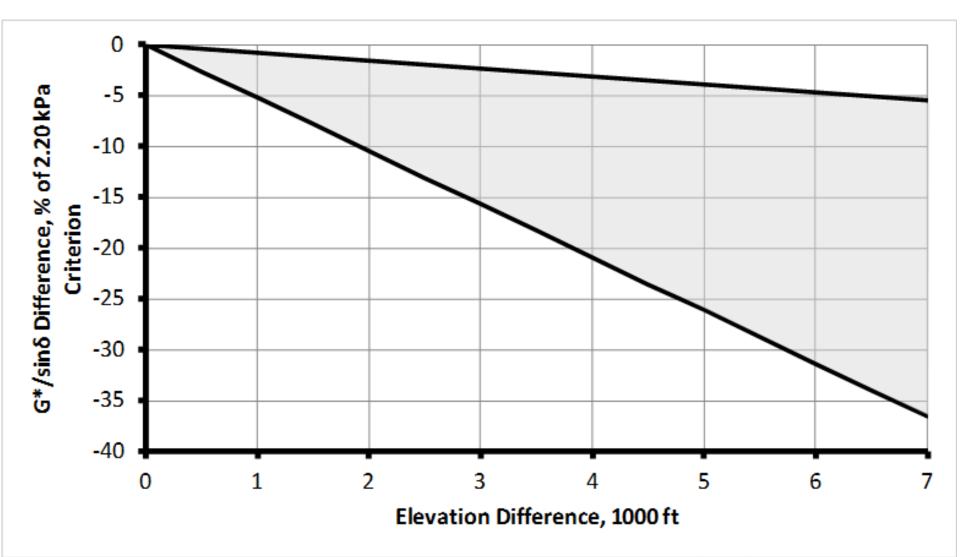

Statistical Analysis

- Properties
 - Original G*/sinδ
 - RTFOT G*/sin δ
 - Aging Index
 - J_{nr3.2}
 - $-R_{3.2}$
 - Mass Change


Advanced Asphalt Technologies, LLC

WCTG Binder 552

AASHTO Resource 235/236



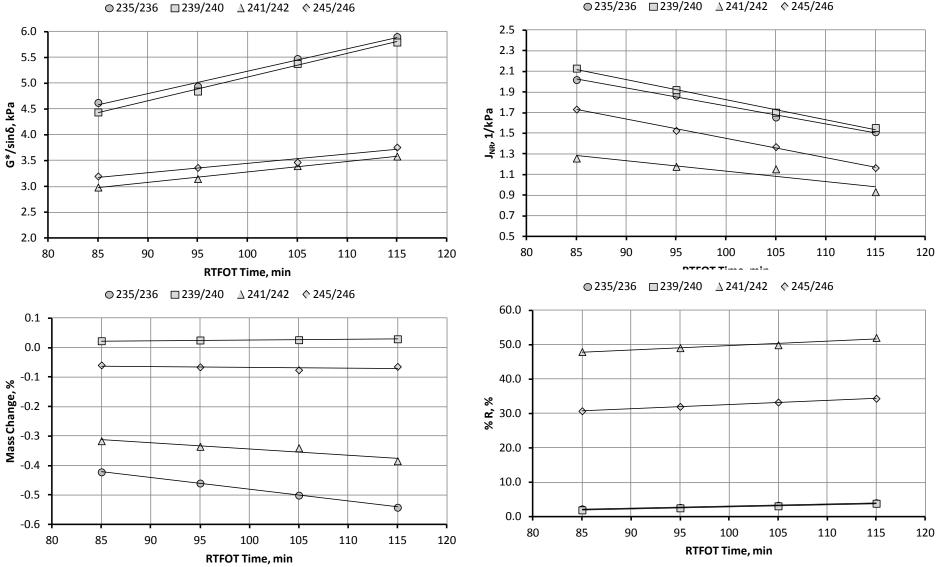
Summary of Statistically Significant Effects

Data Set	Binder	Type*	RTFOT G*/sinδ, kPa/1,000 ft	Aging Index	Mass Change, %/1,000 ft	Jnr, kPa ⁻¹ /1,000 ft	%R, %/ 1,000 ft
	551 P -0.0615 -0		-0.0354		0.0333	-0.059	
	552	Р	-0.0641	-0.0427		0.0432	-0.269
	553	Р	-0.0239	-0.0146		0.0394	-0.432
	554	Р	-0.0173	-0.0136		0.0677	-0.677
WCTG	555	N	-0.1149	-0.0740		0.0927	-0.119
	556	Р	-0.0496	-0.0251	-0.0033	0.0027	0.010
	557	Р	-0.0914	-0.0442		0.0204	-0.546
	560	Р	-0.0477	-0.0271		0.0416	-0.415
	561	Р	-0.0477	-0.0379		0.0593	-0.282
	562	Р	-0.0701	-0.0609		0.0249	0.720
	563	Р	-0.0448	-0.0147		0.0076	-0.413
AASHTO	235/236	Ν	-0.0613	-0.0374		0.0384	-0.094
	239/240	N	-0.0806	-0.0412	-0.0059	0.0470	-0.032
Resource	241/242	Р	-0.0302	-0.0233	-0.0039	0.0002	0.519
	245/246	Р	-0.0257	-0.0188		0.0236	-0.300

* N denotes neat binder, P denotes polymer modified binder

Engineering Significance of Elevation Effect: G*/sinδ

What Are the Options?


- Modify RTFOT to condition at a constant pressure
- Relate elevation effect to other measured binder properties
- Vary RTFOT temperature with elevation

Vary RTFOT time with elevation

Advanced Asphalt Technologies, LLC

Effect of Conidtioning Time on **RTFOT Residue Properties**

○235/236 □239/240 △241/242 ◆245/246

Experimental Estimate of Additional RTFOT Conditioning Time

Binder	ΔG*/sinδ, kPa/min	ΔG*/sinδ, kPa/1,000 ft	Additional Conditioning Time, min/1,000 ft	Δ J _{NR} , kPa ⁻¹ /min	Δ J _{NR} , kPa ⁻¹ /1,000 ft	Additional Conditioning Time, min/1,000 ft	
235/236	0.0468	-0.0645	1.4	-0.01728	0.0384	2.2	
239/240	0.0460	-0.0806	1.8	-0.01946	0.0470	2.4	
241/242	0.0217	-0.0296	1.4	-0.01002	0.0006	0.1	
245/246	0.0172	-0.0257	1.5	-0.00939	0.0217	2.3	

Average = $1.9 \min/1000 \text{ ft}$

Advanced Asphalt Technologies, LLC

Theoretical Estimate of Additional RTFOT Conditioning Time

Carbonyl formation rate model¹

$$r_{CA} = Ap^{\alpha} e^{\left(\frac{-E}{RT}\right)}$$

where:

 r_{CA} = carbonyl formation rate

p = oxygen pressure

T = temperature

R = universal gas constant

A, α , and E are binder dependent fitting constants

¹Liu, M.; Lunsford, K. M.; Davison, R. R.; Glover, C. J.; Bullin, J. A." The Kinetics of Carbonyl Formation in Asphalt," American Institute of Chemical Engineers Journal, Volume 42, 1996.

Advanced Asphalt Technologies, LLC

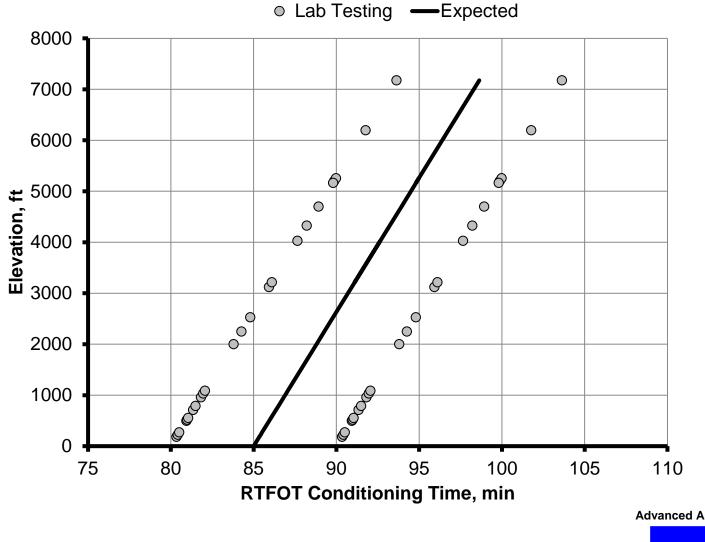
Theoretical Estimate of Additional RTFOT Conditioning Time

 Assume rheological properties depend on total amount of carbonyl formed

$$\left(\mathbf{r}_{\mathrm{CA}}\right)_{0}\mathbf{t}_{0}=\left(\mathbf{r}_{\mathrm{CA}}\right)_{\mathrm{h}}\mathbf{t}_{\mathrm{h}}$$

$$t_{h} = t_{0} \left(\frac{p_{0}}{p_{h}}\right)^{\alpha}$$

Advanced Asphalt Technologies, LLC


Theoretical Estimate of Additional RTFOT Conditioning Time

Elevation	Equivalent RTFOT Conditioning Time, min								
ft	$\alpha = 0.25$	$\alpha = 0.30$	$\alpha = 0.35$	$\alpha = 0.40$	$\alpha = 0.45$	$\alpha = 0.50$	$\alpha = 0.55$	$\alpha = 0.60$	Exp
0	85	85	85	85	85	85	85	85	85
1000	86	86	86	86	87	87	87	87	87
2000	87	87	87	88	88	89	89	89	89
3000	88	88	89	89	90	90	91	92	91
4000	89	89	90	91	92	92	93	94	93
5000	89	90	91	92	93	94	95	96	95
6000	90	92	93	94	95	96	97	99	96
7000	91	93	94	96	97	98	100	101	98

Advanced Asphalt Technologies, LLC

Experiment Design

Advanced Asphalt Technologies, LLC

Experimental Design

- 24 Labs
 - 181 ft to 7124 ft
- 8 Binders

Binder	Туре
PG 64-22	Neat
PG 76-22	Polymer
PG 58-28	Neat
PG 64-28	Neat
PG 76-28	Polymer
PG 52-34	Neat
PG 58-34	Polymer
PG 64-34	Polymer

Advanced Asphalt Technologies, LLC

Experimental Design

- Each lab will condition each binder at two times based on elevation
 - 2 bottles for mass change at lab
 - 2 bottles returned to AAT for rheological testing
 - 8 RTFOT runs per laboratory
- Analysis
 - T 240 mass change
 - T 315 G*/sinδ
 - T 350 $J_{nr3.2},$ and $R_{3.2}$

Advanced Asphalt Technologies, LLC

Status

- Binders have been received
- Containers have been received
- Currently breaking down binders for shipment
- Expect an e-mail from me to verify shipping address and laboratory elevation
- Expect to ship binders in October

Advanced Asphalt Technologies, LLC

