Update of TS 2b Activities

Committee on Materials & Pavements

ETG Binder Meeting Bozeman, MT September 19, 2017

New Proposed Practice

Removal of the Elastic Recovery graph from M 332 Multiple Stress Creep Recovery Specification.

Big Debate

- Didn't see the need.
- Didn't want to have to specify another standard.
- Some would have to amend their current specifications.
- Was there a Champion for this move?
- Will possibly have to consider keeping in M 332
 - What would be the best way to do so?

Proposed New Task Forces

- Task Force 17-01:
 - Re-write T 228 which is currently a "C" standard.
 - Members are:
 - Leslie White (Montana), Maria Knake (AASHTO), and Georgene Geary (AASHTO Consultant).
- Task Force 17-02:
 - Looking at developing a new standard for long term aging, the determination of ΔT_c and a practice explaining how to use ΔT_c .
 - Members are:
 - Lyndi Blackburn (AL), Chris Peoples (NC), Anne Holt (ON), Tim Ruelke (FL), Rick Bradbury (ME), Brett Haggerty (TX), Bob Horan (Asphalt Institute), Denis Boisvert (NH), Jack Youtchef (FHWA), and Matt Corrigan (ETG liaison).

Precision & Bias

- This need was raised at the last ETG meeting.
- Task Force was already in place to look at T 350 MSCR test.
- AASHTO RE:source provided data for the following standards:
 - ► T 313 Bending Beam Rheometer
 - ► T 315 Dynamic Shear Rheometer
 - T 316 Rotational Viscosity
 - T 350

T 313 - BBR

Creep Stiffness	1s%	d2 s%
Single Operator	2.149	6.08167
Multi-laboratory	5.0025	14.15708

Curront		Coefficient of	Acceptable
		Variation	Range of Two
		$(18\%)^a$	Test Results
	Condition		$(d2s\%)^a$
	Creep Stiffness (MPa)		
	Single-Operator Precision:	2.5	7.2
	Multilaboratory Precision:	6.3	17.8
>	ETG Binder Meetir Sep	ng Bozeman, MT tember 19, 2017	

T 313- BBR

Propose	d Slope (m- value)	1 s%	d2s%
	Single Operator	0.9298	2.631334
	Multi-laboratory	2.054	5.81282
Current	Condition	Coefficient of Variation (1s%) ^a	f Acceptable Range of Two Test Results (d2s%) ^a
	Slope (<i>m</i> -value)		
	Single-Operator Precision:	1.0	2.9
	Multilaboratory Precision	2.4	6.8

ETG Binder Meeting Bozeman, MT September 19, 2017

T 315 – DSR Original

	1s%	d2s%
Single Operator	1.6405	4.642615
Multi-laboratory	3.618	10.23894

Curr	ont	Coefficient of	Acceptable
		Variation	Range of Two
		$(1s\%)^{a}$	Test Results
	Condition		$(d2s\%)^a$
	DSR - ORIGINAL		
	Single-Operator Precision:	2.3	6.4
	Multilaboratory Precision	6.0	17.0
<u>-</u>	ETG Binder	Meeting Bozeman, N September 19, 20	ЛТ 17

T 315 – DSR RTFO

	1s%	d2s%
Single Operator	2.549	7.21367
Multi-laboratory	5.95455	16.85138

Current	Coefficient of	Acceptable
• Ourront	Variation	Range of Two
	$(1s\%)^{a}$	Test Results
Condition		$(d2s\%)^{a}$
DSR - RTFO		
Single-Operator Precisi	on: 3.2	9.0
Multilaboratory Precisi	on 7.8	22.2
ETG	Binder Meeting Bozeman, N September 19, 20	ИТ 17

T 315 – DSR PAV

	1s%	d2s%
Single Operator	3.9495	11.17709
Multi-laboratory	9.6975	27.44393

Current	Coefficient of	Acceptable
	Variation	Range of Two
	$(1s\%)^{a}$	Test Results
Condition		$(d2s\%)^{a}$
DSR - PAV		
Single-Operator Pre	ecision: 4.9	13.8
Multilaboratory Pre	ecision 14.2	40.2
	ETG Binder Meeting Bozeman, N September 19, 20	ЛТ 17

T 316- Rotational Viscosity

Proposed

	1 s%	d2s%
Single Operator	0.95185	2.693736
Multi-laboratory	3.7155	10.51487

Current	Coefficient of	Acceptable
	Variation	Range of Two
	$(1s\%)^{a}$	Test Results
Condition		(d2s%) ^a
Rotational Viscosity (Avg.)		
Single-Operator Precision:	4.9	13.8
Multilaboratory Precision	14.2	40.2
ETG Binde	er Meeting Bozeman,	MT

September 19, 2017

AASHTO RE:source

Recovery @ 0.1 kPa	1 s	d2s
Single Operator	1.167127	3.302971
Multi-laboratory	3.561974	10.08039

Recovery @ 0.1 kPa	1 s	d2s
Single Operator		5.5
Multi-laboratory		10.2

AASHTO RE:source

Recovery @ 3.2 kPa	1 s	d2s
Single Operator	1.423699	4.029069
Multi-laboratory	3.067984	8.682394

Recovery @ 3.2 kPa	1 s	d2s
Single Operator		6
Multi-laboratory		14.5

T 350

Percent Difference in Recovery

	1 s	d2s
Single Operator	1.481639	4.193037
Multi-laboratory	4.489717	12.7059

AASHTO RE:source

Jnr @ 0.1 kPa	1 s	d2s
Single Operator	4.035	11.41905
Multi-laboratory	10.436	29.53388

Jnr @ 0.1 kPa	1 s	d2s
Single Operator		14.7
Multi-laboratory		31.7

AASHTO RE:source

Jnr @ 3.2 kPa	1 s	d2s
Single Operator	0.073446	0.207853
Multi-laboratory	0.698131	1.975711

Jnr @ 3.2 kPa	1 s	d2s
Single Operator		14.5
Multi-laboratory		34.2

AASHTO RE:source

Percent Diff in Jnr	1s%	d2s%
Single Operator	4.55	12.8765
Multi-laboratory	21.6375	61.23413

Percent Diff in Jnr	1 s	d2s
Single Operator		29.1
Multi-laboratory		48.4

Other Minor Business

- Adding T 240 RTFO to the P&B
- ► T 48 –Cleveland Cup Updating the figures.
- R 15 Additives, etc. Comments were addressed after having made the editorial changes received through the ballot.
- TP 102 Release Agents -Moving forward with changes received through TS ballot.
- M 332 MSCR Specification Moving forward with changes to terminology that addressed NV's concerns.
- R XX This will move forward after having found the PA negative non-persuasive.
- MP XX Performance Graded Surface Treatments

Comments and Suggestions

- Lyndi D. Blackburn, P.E.
 Assistant State Materials & Tests Engineer
 - blackburnl@dot.state.al.us