NCHRP Project 9-61

Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

Ramon Bonaquist, P.E. Advanced Asphalt Technologies, LLC

Advanced Asphalt Technologies, LLC

Research Team

Advanced Asphalt Technologies, LLC

– Ramon Bonaquist - PI

- Western Research Insititute
 - Jeramie Adams Co-PI
- Consultants
 - Dave Anderson
 - Gayle King
 - Jim Rosenberger
 - Erick Sharp

Advanced Asphalt Technologies, LLC

Outline

- Objectives
- Project Tasks
- Work Completed
- What's Next

Advanced Asphalt Technologies, LLC

Objectives

- Evaluate AASHTO 240, AASHTO R 28 and alternatives
- Recommend improvements
 - New procedure
 - Modifications to existing procedures
- Calibrate the improved procedures to accurately simulate aging
 - Mixture production, transport, and placement
 - Service life of the pavement

Advanced Asphalt Technologies, LLC

NCHRP 9-61 Is Not!

- A study of binder rheology
- A study of binder chemistry
- A study to relate chemical and rheological properties of binders
- A study to recommend improved specification criteria

Advanced Asphalt Technologies, LLC

Approach

- Task 1. Evaluate and Select Methods
- Task 2. Prepare Experimental Plans
- Task 3. Prepare Interim Report
- Task 4. Conduct and Analyze Experiments
- Task 5. Perform Industry Impact Assessment
- Task 6. Prepare Methods in AASHTO Format
- Task 7. Prepare Final Report

Advanced Asphalt Technologies, LLC

How Much Binder?

- Only a few grams if you use 4 mm DSR
 Probably not realistic at this time
- M 320 or M 332 without direct tension
 - 35 g for verification
 - 65 g for grading
- M 320 or M 332 with Modified DENT? (per 9-59)
 - 75 g for verification
 - 105 g for grading
- M 320 or M 332 with LAS? (per 9-59)
 - 40 g for verification
 - 70 g for grading

Advanced Asphalt Technologies, LLC

What is Target Age for Long-Term?

- Consensus that R 28 (20 hour PAV) is not severe enough
- Research now using 40 hour PAV
- Limited field data equating either 20 or 40 hour PAV to field properties
 - SHRP A 369: 20 hr PAV ~ 4 to 8 years
 - Erskine, et al. 2012: 40 hr PAV ~ 8 years
 - AAPTP Project 06-01: No change to R 28
 - WRI Fundamental Properties of Asphalts and Modified Asphalts III : ALF, and AZ
 - Braden Smith

Advanced Asphalt Technologies, LLC

Analysis of LTPP SPS 8 Sites

- New pavements on roads with limited truck traffic
- Two sections
 - 4 in AC on 8 in of aggregate base
 - 7 in AC on 12 in of aggregate base
- 15 sites constructed
- Distresses monitored every 1 to 2 years

Advanced Asphalt Technologies, LLC

Transverse Cracking in SPS 8 Sections

Practice Related T 240 Conditioning Issues

- Uniformity of the film and how well it is renewed is viscosity dependent
- Some modified binders tend to crawl out of the bottle
- Shape of the bottle makes recovery of the binder and cleaning difficult
- Procedure does not address WMA

Advanced Asphalt Technologies, LLC

Short-Term Alternates

- Modified German Rotating Flask
- Stirred Air Flow Test
- Universal Simple Aging Test
- Rotating Cylinder Ageing Test
- Ageing Profile Test

Advanced Asphalt Technologies, LLC

Short-Term Considerations

- Quantity of binder
- Number of binders per run
- Conditioning time
- Improves film uniformity
- Eliminates crawling from container
- Suitable for crumb rubber binders
- Simulate HMA and WMA temperatures
- Improves binder recovery
- Standard available
- Equipment availability
- Equipment cost
- Training cost

Advanced Asphalt Technologies, LLC

Short-Term Selections

 Modifications to t 240 made in the U.K. Ageing Profile Test

- Thicker Film USAT
 - Around 0.8 mm rather than 0.3 mm to increase yield

Advanced Asphalt Technologies, LLC

AAC-1 @ 163 °C for 85 min

Advanced Asphalt Technologies, LLC

AAF-1 @ 163 C for 85 min

Advanced Asphalt Technologies, LLC

Practice Related R 28 Conditioning Issues

- Conditioning is not severe enough
- Service life that is simulated is not well defined

Long-Term Alternates

- Rotating Cylinder Ageing Test
- Ageing Profile Test
- Universal Simple Aging Test
- Extended Time PAV
- Thinner Film PAV
- Increased Temperature PAV
- Mixing in PAV
 - Ultrasonic
 - Resonant Acoustic

Advanced Asphalt Technologies, LLC

Long-Term Considerations

- Quantity of binder
- Number of binders per run
- Conditioning time
- Conditioning temperature
- Atmosphere (air vs oxygen)
- Pressure
- Correlated to field aging
- Standard available
- Equipment availability
- Equipment cost
- Training cost

Advanced Asphalt Technologies, LLC

Long-Term Selection

• Thinner Film PAV

Film	Surface Area Required, cm ²				
Thickness.	Verification	Grading			
mm	(75 g assumed)	(105 g assumed)			
3.18	233	330			
1.59	465	660			
0.8	925	1313			
0.3	2467	3500			

Advanced Asphalt Technologies, LLC

AAF-1 Master Curve Parameters

AAF-1 Master Curves

Example PAV Pan for 0.8 mm Film

Advanced Asphalt Technologies, LLC

Proposed Phase 2 Experiments

- Short-Term Final Selection
- Short-Term Calibration
- PAV Thickness, Time, Temperature
- Long-Term Calibration
- Sensitivity Study

Advanced Asphalt Technologies, LLC

Short-Term Selection

- Make final selection of short-term procedure
 - Thin film aging (0.8 mm)
 - UK mixing screw
 - NCHRP 9-61 improved mixing screw
- Compare binder conditioning procedures to binder recovered from short-term oven aged mixtures
 - NCHRP 9-52 recommendations
 - HMA 2 hours at 135 °C
 - WMA 2 hours at 116 $^{\circ}C$

Advanced Asphalt Technologies, LLC

Short-Term Selection

Aging Methods	Neat PG 52-34		Polymer (Terpolymer) PG 64-34		Neat PG 64-22		Polymer (SBS) PG 76-22		GTR ASTM D 6114
	WMA	HMA	WMA	HMA	WMA	HMA	WMA	HMA	HMA
AASHTO T 240	X	X	X	X	X	X	X	X	X
UK Mixing Screw	X	X	X	X	X	X	X	X	X
NCHRP 9-61	v	v	v	v	v	v	v	V	v
Mixing Screw	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Static Thin Film	v	v	v	v	v	v	v	V	v
(0.8 mm)	Λ					Λ	Λ	Λ	Λ
Recovered, NCHRP	v	X			v	v	v	V	v
9-52 Oven Aging	Λ			Λ	Λ		Λ	Λ	Λ

Response variables:

- High temperature continuous grade
- Master curves
- CS+SO
- GPC for modified binders

Advanced Asphalt Technologies, LLC

Short-Term Calibration

- Calibrate the selected procedure (varying conditioning time) to reproduce properties of binder recovered from short-term conditioned loose mix
- NCHRP 9-52 recommendations
 - HMA 2 hours at 135 °C
 - WMA 2 hours at 116 $^{\circ}C$
- High Temperature Continuous
 Grade

Short-Term Calibration

	Binder Properties			Mix Properties			
Mix	Binder Type	Low		19 mm	9.5 mm	SMA	
Temp		Temp	Index	Sandstone	Limostono	Diabase with	
		Grade			Linestone	Limestone Filler	
WMA Modified		-34 or -28	Low	X	Х	Х	
	Noot		High	X	Х	Х	
	Neal	22 or 16	Low	X	Х	Х	
		-22 01 -10	High	X	Х	Х	
		-34 or -28	Low	X	Х	Х	
	Modified		High	X	Х	Х	
		22 or 16	Low	X	Х	Х	
		-22 01 -10	High	X	Х	Х	
HMA Modified	24 or 29	Low	X	Х	Х		
	Noot	-34 01 -20	High	X	Х	Х	
	Neal	-22 or -16	Low	X	Х	Х	
			High	X	Х	Х	
		-34 or -28	Low	X	Х	Х	
	Modified		High	X	Х	Х	
		-22 or -16	Low	X	X	X	
			High	X	X	X	

PAV Thickness, Time, Temperature

- Investigate how to reasonably simulate more aging using the PAV
- Vary thickness, time, temperature
- Compare rheological and chemical properties to recovered binders from ARC Arizona (hot,16 yrs) and Minnesota (cold, 11yrs) sections
- Binder master curves, carbonyl + sulfoxide

Advanced Asphalt Technologies, LLC

ALF Field Aging

Advanced Asphalt Technologies, LLC

ALF Master Curves

ARC AZ and MN Binders

Site	Grade	Source	Modification
Arizona US	PG 76-16	WTI/WTS blend	Airblown
93	PG 76-16	Venezuelan	N/A
	PG 76-16	Rocky Mountain	N/A
		Blend	
	PG 76-16	Canadian Blend	N/a
Rochester,	PG 58-34	Canadian Blend	Terpolymer
MN	PG 58-28	Canadian Blend	N/A
	PG 58-28	Middle East Blend	N/A
	PG 58-28	Venezuelan Blend	N/A

Advanced Asphalt Technologies, LLC

Partial Factorial

	Thickness,	Time, hrs			
Temp, C	mm	20	30	40	
90	3.18		X		
	1.59	Х		Х	
	0.80		X		
100	3.18	Х		Х	
	1.59		X		
	0.80	Х		Х	
110	3.18		Х		
	1.59	Х		X	
	0.80		X		

Response surface experiment Process improvement experiments

Advanced Asphalt Technologies, LLC

Output of Thickness, Time, Temperature Experiment

- Film thickness
- Conditioning time
- Range of useable temperatures

Advanced Asphalt Technologies, LLC

Long-Term Calibration

- Using thickness and time from the previous experiment, vary the conditioning temperature to determine conditioning temperature that reproduces the properties of binder recovered from field cores
- Binder master curves, carbonyl + sulfoxide

Advanced Asphalt Technologies, LLC

Example

Advanced Asphalt Technologies, LLC

Available Original Binders and Cores From LTPP

Regression Analysis of Conditioning Temperatures

- Factors
 - Climate
 - Age
 - Depth in pavement
 - Air voids
 - Binder volume
- Use regression model to recommend final lab conditioning temperatures

Advanced Asphalt Technologies, LLC

Sensitivity Study

- M 320 and M 332 Grade several binders
 - Current T 240 and R 28
 - Improved procedures developed in NCHRP 9-61
 - Materials with proven performance
 - Newer materials
 - 8 to 10 binders
- Information for the Industry Assessment

Advanced Asphalt Technologies, LLC

