Rheological, Chemical, Mechanical Properties of Re-refined Engine Oil Bottoms (REOB) Modified Binder

Louay N. Mohammad

Taesun You, Yucheng Shi

Department of Civil and Environmental Engineering

LA Transportation Research Center Louisiana State University William H. Daly, Ioan I Negulescu Sreelatha Balamurugan

Department of Chemistry, LSU

Munir Nazzal

Department of Civil Engineering Ohio University

Gaylon Baumgardner, Codrin Daranga *Ergon*

FHWA Asphalt Binder Expert Task Group Meeting Bozeman, Montana September 19-20, 2017

The Story!

- Background
- Objectives/Scope
- Methodology
 - Binder Experiment

- Gel permeation Chromatography (GPC)
- X-ray fluorescence spectroscopy (XRF)
- Fourier transform infrared (FTIR) spectroscopy
- Atomic Force Microscopy (AFM)
- Mixture Experiment
 - Semi-circular bend (SCB) test
- Results
- Summary and Conclusion

Use of REOB: Concern

Inconsistent and conflicting conclusions

Detrimental	Not Detrimental		
Poor field performance	Equal field performance		
Adverse effect on binder	Equal or improved binder and		
properties	mixture properties		

- Limitations with current Superpave testing/specification
 - Need for additional aging/testing protocols
 - Sometimes requires other analysis approaches (e.g., GPC, FTIR, XRF etc.)

Objectives

- Evaluate rheological, chemical, micro-mechanical and mechanical properties of aged binders containing
- Correlate binder properties to mixture intermediate temperature cracking performance

Scope

- 12.5 NMAS asphalt mixture
- Four Binders
 - PG 70-22
 - 0-, 5-, 10-, and 15% REOB
- Binder Experiment
 - Rheological tests
 - Micro-mechanical properties
 - atomic force microscopy
 - chemical properties
 - GPC, FTIR, and XRF
- Mixture Experiment
 - SCB at intermediate temperature
 - ASTM D 8044

Binder Experiment • Gel Permeation Chromatography (GPC)

Quantification of GPC curves by integration

- X-ray Fluorescence Spectroscopy (XRF)
- To identify elemental composition of binder samples generally found in REOB
 - Calcium (Ca)
 - zinc (Zn)
 - molybdenum (Mo)
 - copper (Cu)

EDXRF PANalytical Epsilon 1Spectrometer

- Fourier Transform Infrared (FTIR) Spectroscopy
- To identify chemical functional groups
- Carbonyl Index (CI): presence of REOB and aging change

Bruker Alpha FT-IR spectrometer)

• Atomic Force Microscopy (AFM)

Reduced Elastic modulus

$$E_{reduced} = \frac{\pi}{2} \frac{F}{\delta^2 \tan(\alpha)}$$

Total energy needed to separate AFM tip from a sample

$$E_{bonding} = \int_{z_0}^{z_1} F dz \approx \frac{\Delta z}{2N} \sum_{i=1}^{N} [F(z_{i+1}) + F(z_i)]$$

F: measured force
δ: indentation depth
α: half-opening angle of the AFM
tip
d: cantilever deflection

z: piezo-driver displacement

Distance, z

Mixture Experiment

- Semi-Circular Bend Test
- ASTM D8044
- Temperature: 25°C
- Half-circular Specimen
 - Laboratory prepared
 - 150mm diameter X 57mm thickness
 - simply-supported and loaded at mid-point
- Notch controls path of crack propagation
 - 25.4-, 31.8-, and 38.0-mm
- Aging: 5 days, 85°C
- Loading type
 - Monotonic
 - 0.5 mm/min
 - To failure
- Record Load and Vertical Deformation
- Compute Critical Strain Energy: J_c

Results

PG test results

Results

• Atomic Force Microscopy

Reduced Elastic modulus

Total energy needed to separate AFM tip from a sample

Results -- AFM

• Relationship between $\mathsf{E}_{\mathsf{reduced}}$ and $\mathsf{G}^*\mathsf{sin}\delta$

SARA data of				Asp	haltenes %	Resins %	Cyclic %	Saturates %	Total %
REOB		Origi sa	nal REOB ample		15	34.7	0.8	63	100
			RTFO		3.7	21.3	0.9	74.1	100
			PAV		2.1	25.5	1.2	71.2	100
Sample Name	10(30) (%	00- OK %)	300- 45K (%)	45-19K (%)	Asphalten % 19K-3K	es Malt 9 <	enes % 3K		
REOB	0.3	36	5.54	3.37	18.33	72	2.4		
Determination of maltenes, asphaltenes and polymer content based on the molecular weight regions 100000 100000 10000 10000 1000 1000									

Gel Permeation Chromatography

Sample	HMW [*] Polymer 300-45K, %	Associated Asphaltenes 45-19K, %	Asphaltenes 19-3K, %	Maltenes < 3K, %
REOB	5.9	3.37	18.33	72.4
Unaged base binder	3.96	1.63	21.33	73.08
Aged base binder	3.16	3.76	24.87	68.27
Aged 5% REOB modified binder	2.8	3.59	23.66	69.95
Aged 10% REOB modified binder	4.57	3.95	24.69	66.79
Aged 15% REOB modified binder	5.1	3.71	23.96	67.23

Results – Compositional analysis

Gel Permeation Chromatography

Determination of maltenes and asphaltenes content of 64-CO binder based on the molecular weight regions Determination of maltenes and asphaltenes content of 64-CO binder by deconvolution of the GPC curve

Results -- Compositional analysis

Gel Permeation Chromatography

- Gel Permeation Chromatography
- Distribution of molecular species showing peak molecular weights

Sample	HMW [*] Species %/MW	Associated Asphaltene Species %/MW	Asphaltenes 2 %/MW	Asphaltenes 1 %/MW	Maltenes %/MW
Aged base binder	1.9 /109K	4.7 /34K	15.1 /9.3K	9.6 /3.9K	68.8 /1,050
Aged 5% REOB modified binder	1.5 /90.5K	4.4 /39K	17.8 /8.5K	7.6 /3.5K	68.7 /1,050
Aged 10% REOB modified binder	4.1/110K	3.7 /32K	14.6/10.8K	14.8 /3.8K	62.8 /1,050
Aged 15% REOB modified binder	4.0/115K	4.2 /35K	16.7 /9.6K	19.4 /3.9K	55.7 /1,025

Compositional analysis • Gel Permeation Chromatography

• Gel Permeation Chromatography

- Comparison of theoretical data calculated according to percentage of REOB content with experimental results

Sample	>45K, %	Asphaltenes, %	Maltenes, %
5% REOB modified binder			
Calculated	3.3	28.22	68.48
Integrated	2.8	27.25	69.95
De-convoluted	1.5/90.5K	29.75	68.75
10% REOB modified			
binder Calculated Integrated De-convoluted	3.4 4.6 4.1/110K	27.89 28.64 33.10	68.68 66.79 62.80
15% REOB modified binder Calculated Integrated	3.6 5.1 4.0/115K	27.51 27.67 40.30	68.89 67.33 55.70

X-ray fluorescence spectroscopy

Fourier transform infrared spectroscopy

Results

 Relationship between mixture cracking performance and binder properties

Summary and Conclusion

- Evaluated rheological, chemical, micro-mechanical and macro-mechanical properties of aged binders containing — REOB contents (0-, 5-, 10-, and 15 %)
- In general, binders containing 5% REOB did not adversely affect binder and mixture performance
- ΔTc increased (-) with an increase in REOB content
 More pronounced for 2 PAV and 4 PAV aged binders
- Addition of REOB softened the binder

 low PG decreased with increased REOB content.
- Microscale AFM test results exhibited a decrease in stiffness and bonding energy with an increase in REOB content
- XRF and FTIR spectroscopy successfully identified REOB in binders

Summary and Conclusion

- Residual polymer content in REOB influenced the distribution of maltenes and asphaltenes when REOB concentrations were greater than 5%
- Good correlation was observed between microscale AFM stiffness and PG parameter, G*sinδ as well as between AFM bonding energy of binders and SCB J_c mixture cracking performance
- Good correlation between FTIR CI of binders and SCB J_c mixture cracking performance was found up to REOB content 10%

Sample Name	Total High	Asphaltenes	Maltenes	
	MW %	%	%	
REOB	16.00	20.97	63.03	
REOB-RTFO	16.66	21.7	61.64	
REOB-PAV	18.84	21.61	59.55	

