

Innovative Testing of Ontario's Asphalt Materials

Pamela Marks, P.Eng.

Head, Bituminous Section Ontario Ministry of Transportation

Asphalt Binder Expert Task Group Ames, Iowa May 4, 2017

Presentation Outline

- Background
- Ash Content Test
- Double Edge Notched Tension (DENT) Test
- Multiple Stress Creep Recovery (MSCR)
- Extended Bending Beam Rheometer (ExBBR) Test
- X-Ray Fluorescence (XRF)
- Fourier Transform Infrared (FTIR) Spectroscopy
- Highlights of Mixture Testing
- Future Work, Conclusions

Background

- MTO implemented performance grading grading in 1997 and was only used Superpave mix designs since 2005
- Rutting has all but disappeared
- Cracking is still a concern
- MTO uses a PG plus specification to mitigate cracking concerns and will be refocusing our attention to the properties of the mix

Ash Content Test

- Ash Content test was implemented to prevent overmodification with Re-Refined Engine Oil Bottoms (REOB)
 - Analysis of over 80 samples showed an excellent correlation between ash content and estimated REOB content
- Limited analysis to date shows excellent correlation between 5 year pavement cracking and ash content

Double Edge Notched Tension (DENT) Test

- Used for acceptance as a measure of asphalt cement's:
 - elasticity
 - ability to stretch and
 - resist cracking
- AASHTO TP113 specifies silicone molds with aluminum end pieces and testing at 25°C
- Ontario uses brass molds and tests at:
 - 15°C for PG XX-28 and -34 grades
 - 4°C for PG XX-40 grades

Multiple Stress Creep Recovery (MSCR)

- Ontario's pavement performance concerns have focused on premature cracking and not rutting
- The % recovery portion of the test is used as an indicator of the presence of an elastomeric polymer
- Ontario's asphalt cement (AC) specifications include J_{nr-3.2} and % recovery for acceptance on modified grades since 2012
- * J_{nrdiff} (%) is carried out only for information purposes

MTO Experience with MSCR- Elastic Response

MSCR Specification for High Temperature

- Paving first trial on Hwy 11 near Kapuskasing, ON started in 2016. Uses PG 52H-34 in place of PG 58-34
- Required to meet other MTO AC test requirements

Extended Bending Beam Rheometer (ExBBR) Test

- Determines if AC meets the low temperature performance grade after a physical hardening process that occurs with extended conditioning at cool temperatures
- Test is published as AASHTO TP122-16
- Found best able to predict cracking
- Use for acceptance of all grades
- ExBBR determines low temperature grade over 72 hours vs. 1 hour for standard grading

Estimation of 72 Hour Stiffness and Creep

 MTO developed multivariable regression formulae to predict the 72 hour ExBBR test based on 1 and 24 hour properties:

m-value at 72 hrs (T_{ht}) = 0.03239*(m-value @ 1 hr) + 0.88952*(m-value @ 24 hr) + 0.01129 m-value at 72 hrs (T_{lt}) = 0.17770*(m-value @ 1 hr) + 0.795125*(m-value @ 24 hr) -0.00869 S at 72 hrs (T_{ht}) = 0.13495*(S @ 1 hr) + 0.94721*(S @ 24 hr) + 3.34123 S at 72 hrs (T_{lt}) = 0.16874*(S @ 1 hr) + 0.93364*(S @ 24 hr) + 0.14202

Where:

 T_{ht} = high test temperature T_{lt} = low test temperature

Regression analysis was conducted on over 330 ExBBR tests

Estimation of 72 Hour Stiffness and Creep

 The predicted m-value and S can be used to estimate ExBBR Low Temperature Limiting Grade that could be useful for quality control purposes

ΔT_c From BBR/ExBBR Test

Another useful outcome from the BBR test is:

$$\Delta T_c = T_{stiffness} - T_{creep}$$

Where: $T_{stiffness}$ = critical temperature for stiffness (S) T_{creep} = critical temperature for creep (m-value)

- For the over 60 samples tested, MTO compared single PAV aged BBR and ExBBR results
- ✤ REOB estimates ranged from 0 to 12%

Estimated REOB Content vs. ΔT_c

ΔT_c From BBR/ExBBR Test

Recovered AC ΔTc (°C)							
% Recycled	BBR	ExBBR					
0% RAP + RST	-6.2	-8.3					
10% RAP + 1%RST	-6.0	-10.6					
	-7.6	-13.3					
10% RAP + 0% RST	-8.2	-10.8					
0% RAP +	-8.3	-8.7					
2% RST	-4.2	-7.2					

AC ΔTc (°C)						
BBR	ExBBR					
-4.8	-8.0					
-0.5	-6.1					
-7.9	-9.0					
-1.0	-3.1					

X-Ray Fluorescence (XRF)

- XRF detects the elemental content of a sample
- Transportation agencies, including MTO, are looking at XRF to identify over-modification of REOB in asphalt cement
- Elemental intensity peaks obtained are all relative to other elements found, so calibration curves are required for each element in a material to be quantified (in ppm)
- The four key elements and the levels detected in a REOB sample are:

10,000 ppm
3,000 ppm
300 ppm
100 ppm

X-Ray Fluorescence (XRF)

- MTO created calibration curves from base asphalt cement samples with varying percentages of REOB
- ✤ A linear regression curve was created for each element
- Equations currently used by MTO for estimating REOB content based on each element follow:

Element	Equation for Estimating REOB Content
Calcium	$REOB\%(Ca) = \frac{XRF(Ca) - 16}{109}$
Zinc	$REOB\%(Zn) = \frac{XRF(Zn) - 14}{48}$
Molybdenum	$REOB\%(Mo) = \frac{XRF(Mo) - 18}{4}$
Copper	$REOB\%(Cu) = \frac{XRF(Cu)}{1.5}$

Fourier Transform Infrared (FTIR) Spectroscopy

- FTIR detects the infrared energy absorbed in a sample
- Comparing FTIR spectra of an unknown sample to a "standard" sample can be used to spot modifications made to an "unknown" sample
- FTIR also provides information on the molecular bond and functional groups of modifications that are made to a material
- We found a unique FTIR absorbance peak corresponding to REOB
- A peak was observed near wavenumber 1229 cm⁻¹ believed to correspond to polyisobutylene, an additive used in engine oil

FTIR Spectra

FTIR Spectra for a Contract Sample

REOB Estimation using FTIR and XRF

- FTIR can identify whether REOB is present in the AC *
- MTO is currently estimating % REOB in AC with XRF for information * purposes
- Results are provided below for: *
 - comparison between FTIR peak and XRF estimated REOB content; and •
 - five year pavement cracking performance

Sample	FTIR Ab	sorption	XF	RF Cou	int (pp	m)	Average REOB	age)B		2000 -			•		
Campic	at 1229 cm ⁻¹	Peak Present?	Ca	Cu	Zn Mo		Estimate (%)	km)	1500 -	500		•			
1	172	Yes	937	24	668	79	13		/m) (1000 -			R	² – 0 87	,
2	181	Yes	1378	9	331	36	10		kinç	500 -		•		- 0.07	
3	135	No	23	0	27	10	0.1		Crac	0 -				1	
4	46	No	0	0	11	0	0			() ' DE E	5	1 	0 D Contr	15
5	282	Yes	945	0	509	29	5.5			Х	KFE	stimati	ea REO (%)	B Conte	ent

15

Highlights of Mixture Testing

- Moisture Sensitivity Tests
- Performance Tests using AMPT
- Performance Tests using DTS-30
- Bitumen Bond Strength Test (BBS)

Stripping by Static Immersion Test

- Determines the stripping susceptibility of the different components of an asphalt mix (MTO LS-285)
- Aggregates are blended with asphalt cement and the blended material is submerged in distilled water at 49°C for 24 hours
- Stripping susceptibility of the asphalt mix is assessed visually based on the percentage of the retained coating on the aggregate

~15% retained coating

~85% retained coating

Stripping by Static Immersion Test

- Use percent coating to determine what aggregate, AC, and anti-stripping treatment combination, provides better moisture resistance
- Minimum satisfactory value for this test is 65% retained coating

Aggregate	No Treatment	Hydrated	Alternative	
Type		Lime	AST-AGG	
Granite	15%	85%	90%	

Tensile Strength Ratio (TSR)

- AASHTO T283 is used during mix design to determine susceptibility of an asphalt mix to moisture damage
- Not used to accept production mix
- In some cases we find this to be insufficient and specify anti-strip to minimize risk of stripping
- Tests uses a 40 hour freeze-thaw cycle

Moisture Induced Stress Tester (MIST)

- An alternative moisture conditioning process to the TSR's freeze/thaw conditioning
- In addition to a conditioning process, MIST can be used to evaluate specimens based on sample swelling
- Air voids are measured and the percent swelling is calculated using

$$Swelling = \frac{(BRD_{before} - BRD_{after})}{BRD_{before}}$$

Where:

BRD_{before} = Bulk Relative Density prior to MIST conditioning

BRD_{after} = Bulk Relative Density after MIST conditioning

Moisture Sensitivity Test Results

The results of liquid anti-stripping treatments (AST-AC) for the moisture sensitivity are:

Aggregate Type	Static Immersion		TSR		MIST	-TSR	MIST-Swelling		
	No AST	AST-AC	No AST	AST-AC	No AST	AST-AC	No AST	AST-AC	
Granite	15%	90%	67%	98%	62.0%	74.0%	4.2%	3.1%	
Diabase	98%	*	84%	98%	69.0%	85.0%	2.0%	1.1%	

* Not tested

- The sample with the lowest retained coating, also has the lowest TSR, MIST-TSR and highest swelling value
- Alternately, the diabase had greatest retained coating without AST, the highest TSR, MIST-TSR and lowest swelling
- More testing required

Hamburg Wheel Tracking Test (HWT)

- MTO uses Hamburg Wheel Tracking Machine to:
 - Evaluate antistripping additives for approved product list
 - Evaluate specialty mixes
 - Investigate premature pavement failure
- Not used to evaluate mixes before or during production

AMPT

- * MTO's AMPT (IPC Global) can run the following tests:
 - Dynamic Modulus
 - Flow Number (WMA)
 - Cyclic Fatigue (SMA)
 - Texas Overlay(Fiber)

Performance Testing using DTS-30

- MTO is purchasing a Dynamic Testing System (Pavement Test) that will allow us to run the following:
- Dynamic Modulus
- Flow Number
- Cyclic Fatigue
- Texas Overlay
- Four Point Bending
- Semicircular Bend (SCB)
- Disk-Shaped Compact Tension (DCT)
- Indirect Tensile (IDT) Creep Compliance and Strength
- Resilient Modulus
- TSRST (Thermal Stress Restrained Specimen Test)

Bitumen Bond Strength Test (BBS)

- The BBS test is a simple procedure to measure moisture resistance of the asphalt-aggregate interface for different combinations of materials
- "Pull-Off Strength of Coatings Using Portable Adhesion Testers". (ASTM D4541)
- Just acquired the device

Future Work

- FRAASS breaking point: measures the brittleness of binders at low temperature
- Refining recovery protocol for characterizing recovered binders from loose mix
- Determine if there is a relationship between double PAV BBR ΔTc and Ontario's pavement performance
- Establish a mix testing program to evaluate best options for predicting cracking of mixes placed

Conclusions

- Strong correlation was found between pavement cracking, estimated REOB and ash content
- Relationship between ΔTc and estimated REOB was found to be poor
- Equations developed to predict ExBBR results after 24 hours, correlated well with actual test data - can be used for QC purposes based on grades current used in Ontario
- Found that FTIR spectroscopy can detect REOB
- Can estimate REOB content in asphalt cement using XRF spectroscopy

Questions?

Pamela Marks, P.Eng.

Head, Bituminous Section Ontario Ministry of Transportation

145 Sir William Hearst Avenue, Room 238Downsview, OntarioM3M 0B6(416) 235-3725

pamela.marks@ontario.ca