# Asphalt Binders and Aging 20Hr or 40Hr PAV

John A. D'Angelo
D'Angelo Consulting, LLC

Johndangelo@dangeloconsultingllc.com

## **Superpave Binder Specification**



## Raveling



## **Fatigue Cracking**



### Low Temperature Cracking



### Superpave Conditioning

RTFOT – Short term aging



### Aging Long Term

- Current PAV 20 hrs at 100 C, 100 psi.
- 20 hr PAV
   mandates two days
   for binder
   classification.



## **Superpave Binder Specification**



## New Criteria being looked at for Durability and Fatigue

- ΔTc Difference between BBR S failure temp and m failure temp
  - This is intended to capture brittle cracking
- Glover Rowe G\*(cosδ)²/sinδ Original parameter by Charles Glover Texas A&M to capture Ductility at 15°C 0.005 rads/s
- CAM Model R value
  - Defines shape of the master curve indicating if binder has higher  $G^*$  lower  $\delta$ .

#### Binder Relaxation Properties

- Bending Beam Rheometer measures Stiffness and m value.
- BBR m value measures relaxation of the binder at cold temperatures.
- As binder ages the m value continues to decrease indicating loss of relaxation properties while the stiffness increase levels off.
- The difference in temp where S = 300MPa and m value = 0.3  $\Delta Tc$  is an indicator of embrittlement.

#### Binder Relaxation Properties

#### Ductility

- Ductility run on unaged or short term aged binders at one temperature does not relate well to cracking.
- Glover TAMU investigated recovered binders for the roadway and correlated ductility at 15°C to cracking.
  - Surrogate property rheological property G'/(η'/G') measured at 15°C 0.005rad/s correlated to ductility.

#### Binder Relaxation Properties

- Rowe recalculated Glover property
   G'/(η'/G') to G\*(cosδ)²/sinδ. This can be plotted in Black Space.
- Glover TAMU study indicated ductility 5 cm indicates onset of cracking and ductility of 3 cm will exhibit cracking.

### Current Aging approaches

- Current 20 hour PAV does not represent long enough aging condition to identify critical conditions
  - Extend 20 hour PAV to 40 hour PAV
    - Longer time to grade
  - Use thinner films in the PAV
    - Reduced material for testing
  - Use extremely thin films in an oven.
    - Very small amounts of material special testing 4mm DSR

### Binder Aging

- Longer Aging times being look at to identify embrittlement.
  - Are Longer times needed?
  - Longer time to grade binders
- Can aging ratios identify the same issues?
  - More tests
  - Same time for grading binder

### Binder aging

- Does one 40hr PAV provide similar results to two 20hr PAV conditioning back to back?
- Mathy has done small preliminary study.

#### 2 20hr PAV vs 40hr PAV



#### 2 20hr PAV vs 40hr PAV



## Relationship of crossover Frequency to $\Delta Tc$



### Relationship of R value to $\Delta Tc$



#### Relationship of GR to $\Delta Tc$



#### ΔTc 20 and 40 hour PAV

- Can we determine where the 40hr PAV value we go based on the 20hr PAV?
- Look at the 20hr value and the change from original to 20hr.

#### $\Delta T_{C}$

- There are clear indications that the 20hr PAV and the change from original provides clear indications if 40 hr PAV will fail.
- Rate of change of RTFOT to 20hr PAV (RTFOT ΔTc – 20hr PAV)/20hr projected to 40hr

#### Prediction of 40hr ΔTc

To predict 40hr  $\Delta$ Tc determine rate of change RTFOT to 20hr PAV ( $\Delta$ Tc RTFOT -  $\Delta$ Tc 20hr PAV)/20hr , to predict 40hr  $\Delta$ Tc

| Age        | ΔTc,°C |      |       |      |     |      |      |      |      |      |      |      |      |      |
|------------|--------|------|-------|------|-----|------|------|------|------|------|------|------|------|------|
| RTFO       | 0.5    | 1.0  | -2.6  | 1.7  | 2.8 | 2.3  | -1.3 | 1.3  | 0.6  | 1.9  | 0.4  | 1.3  | 1.7  | 1.6  |
| 20 hr. PAV | -3.3   | -0.9 | -7.0  | -1.0 | 1.7 | -0.5 | -4.8 | -0.9 | -2.7 | 0.8  | -3.1 | -0.5 | -0.7 | -2.3 |
| 40 hr. PAV | -6.1   | -1.4 | -12.4 | -2.3 | 0.8 | -4.7 | -7.6 | -2.6 | -5.8 | -2.6 | -8.7 | -2.9 | -2.2 | -8.4 |
| predicted  | -7.1   | -2.8 | -11.4 | -3.8 | 0.6 | -3.3 | -8.3 | -3.0 | -6.0 | -0.3 | -6.6 | -2.3 | -3.1 | -6.2 |
| diff       | 1.1    | 1.4  | -1.0  | 1.5  | 0.2 | -1.4 | 0.7  | 0.5  | 0.2  | -2.3 | -2.1 | -0.6 | 0.9  | -2.2 |

### **Asphalt Binder Aging**

- Are longer aging times needed?
- Binder aging ratios may capture the same issues without longer aging times.
- The task group will continue to evaluate more materials and different criteria to determine if poor materials can be identified without longer aging.

#### Thank You

#### **Discussions**