New methods for assessing rheology data such as ΔT_c and G-R Parameter and their relationship to performance of REOB in asphalt binders and other materials

Dr. Geoffrey M. Rowe

Abatech

Asphalt Mix and Binder ETG Meetings Ames, Iowa May 3rd, 2017

- Update on document development
- Information on ΔT_c from CA model
- Thoughts on "point" vs. "shape" parameters

Task Group

- Geoffrey M. Rowe (Abatech) (growe@abatech.com)
- Louay Mohammad (LSU) (<u>louaym@lsu.edu</u>)
- Bill Ahearn (VT Agency of Transportation) (bill.ahearn@vermont.gov)
- Mark Buncher (Asphalt Institute) (<u>MBuncher@asphaltinstitute.org</u>)
- Gerald Reinke (MTE Services) (<u>Gerald.Reinke@mteservices.com</u>)
- Walaa Mogawer (UMass) (<u>wmogawer@umassd.edu</u>)
- Nelson Gibson (FHWA) (<u>Nelson.Gibson@dot.gov</u>)
- Tom Bennert (Rutgers) (<u>bennert@rci.rutgers.edu</u>)
- Jean-Pascal Planche (WRI) (jplanche@uwyo.edu)
- Imad Al-Qadi (U of IL) (alqadi@illinois.edu)
- Pamela Marks (Ontario Ministry of Transportation) (pamela.marks@ontario.ca)
- Laci Tiarks-Martin (PRI) (<u>ltiarks@priasphalt.com</u>)
- John D'Angelo (Consultant) (johndangelo@Dangeloconsulting.com)
- David A. Anderson (Consultant) (<u>da.sc@comcast.net</u>)

Document status

- Redrafted with input from taskgroup members
- Forwarded for circulation to wider ETG for final review
- Some additional background provided
- Details on ΔT_c calculation from CA model added with a worked example using data from Anderson et al. (2011) paper

New methods for assessing rheology data such as ΔTc and G-R Parameter and their relationship to performance of REOB in asphalt binders and other materials

```
Geoffrey M. Rowe (Abatech) (growe@abatech.com)

Louay Mohammad (LSU) (louaym@lsu.edu)

Bill Ahearn (VT Agency of Transportation) (bill.ahearn@vermont.gov)

Mark Buncher (Asphalt Institute) (MBuncher@asphaltinstitute.org)

Gerald Reinke (MTE Services) (Gerald.Reinke@mteservices.com)

Walaa Mogawer (UMass) (wmogawer@umassd.edu)

Nelson Gibson (FHWA) (Nelson.Gibson@dot.gov)

Tom Bennert(Rutigers) (bennert@rci.utgers.edu)

Jean-Pascal Planche (WRI) (planche@uwvo.edu)

Imad Al-Qadi (U of IL) (alqadi@illinois.edu)

Pamela Marks (Ontario Ministry of Transportation) (pamela.marks@ontario.ca)

Laci Tiarks-Martin (PRI) (<u>thiarks@priasphalt.com</u>)

John D'Angelo (Consultant) (<u>ioludangelo@dangeloconsultingllc.com</u>)

David A. Anderson (Consultant) (<u>da se@conteast.net</u>)
```

Contents

The Development of Glover Barry (G. D)	
The Development of Glover-Rowe (G-R) and $\Delta T_c P$. The Interrelation Between Parameters	arameters
The Interrelation Between Parameters Relationships with other parameters	
Lies of G a T	
Relationships with other parameters Use of CA Equation to Estimate ΔT_{e}	
Assessment of REOB material and other material	
REOB materials	10
What is REOB?	
The perception of an industry problem	10
Researcher's studies	
Industry response	
Other materials PmB's – Polymer modified binders	
PmB's - Polymer modified binders	
RA - rejuvenating agents	
RAS - recycled asphalt shingles	20
RAP – recycled asphalt pavement	
Summary	21
Summary	21
References	

This document has been complied by a task group under the direction of the FHWA Asphalt Binder Expert Task Group. This document provides a written summary of the REOB presentations made in early 2015 and some discussions relating to rheological parameters that the FHWA Binder ETG has been reviewing for binder specifications.

April 2017

Interconversions

- CA model defines rheology in region of 10⁵ to 10⁹ Pascals to a good accuracy
- \bullet From this possible to calculate G-R and ΔT_c
 - Calculation of ΔT_c more complex
 - Can calculate from BBR or DSR data
 - Example using BBR data
- Method on next few slides

CA equation

- Form of CA within RHEA
 - *S* = Stiffness modulus
 - $S_{\rm g}$ = Glassy stiffness modulus
 - *t* = Time of interest
 - λ, β = Fitting parameters in the CA equation
 - $R = \log 2 / \beta$
- Time at a given stiffness is given by

$$S(t) = S_g \left[1 + \left(\frac{t}{\lambda}\right)^{\beta} \right]^{-1/\beta}$$

$$t(S) = \lambda \left[\left(\frac{S}{S_g} \right)^{-\beta} - 1 \right]^{1/\beta}$$

Determination of ΔT_c from the CA equation

- Further rearrangement provides for the determination:
 - The slope, m(t), were the time is set
 - The time, t(m) at when the slope is set
- In this formulation we have assumed an Arrhenius function – ok for BBR data in stiffer region of master curve (could consider linearized form or Kealble – in further development)
 - a_T = Time temperature shift function,
 - c = Constant determined via regression analysis
 - T = Temperature, °K
 - T_r = reference temperature, °K

$$m(t) = \frac{1}{\left[1 + \left(\frac{t}{\lambda}\right)^{-\beta}\right]}$$

$$t(m) = \lambda \left[\left(\frac{1}{m} \right) - 1 \right]^{-1/\beta}$$

$$\ln a_T = c \left(\frac{1}{T} - \frac{1}{T_r} \right)$$

The CA and Arrhenius equation result

- Combining the two equations we can develop two further equations
 - Stiffness at a temperature, *T*, which corresponds to a loading time of 60 seconds
 - Temperature (*T*) that corresponds to a stiffness at defined at 60 seconds
- Now we can do the steps to calculate ΔT_c using a stepwise process

$$S(T, 60) = S_g \left[1 + \left(\frac{60}{\lambda \exp\left[c\left(\frac{1}{T} - \frac{1}{T_r}\right)\right]} \right)^{\beta} \right]^{-1/\beta}$$

$$T(S,60) = \left[ln \left(\frac{60}{\lambda \left[\left(\frac{S_g}{S} \right)^{\beta} - 1 \right]^{1/\beta}} \right) / C + \frac{1}{T_r} \right]^{-1}$$

Example

- Data from Anderson et al. (2011)
 - Computed values for S_g =2,638.1MPa, λ = 4,787.93 seconds, β = 0.183734, T_r = -18°C and Arrhenius constant = 29,680.4 ("0" aging condition)
 - 1. Obtain parameters as noted above
 - Use T(S) to get Temperature for S=300 when loading time is fixed as 60 seconds [= -16.9 C]
 - 3. Use t(m) to obtain the loading time when m=0.300 at the reference temperature [= 47.6 sec]
 - 4. Use S(t) to obtain the stiffness value when the loading time is associated with m=0.300 at the reference temperature [for t=47.6 sec, S(t)= 378.6 MPa at T_{ref}]
 - 5. Use T(S) to obtain the temperature for the condition at which S(t) at the reference temperature corresponds to m=0.300 [S=378.6 which results in T(m) = -18.5°C]
 - 6. Subtract T(S) T(m) to get ΔT_c . [-16.9 (-18.5) = +1.4]

Point vs. shape

 Need to consider what is defined as a point property versus a parameter that defines a shape of the master curve or part of the master curve

What is ΔT_c ?

- T_{S(60s)} -T_{m(60s)}
- ΔT_c defines the slope of the stiffness curve in the temperature domain
- Is a shape parameter in the higher stiffness region – related to temperature susceptibility and the rheological index

What is Glover-Rowe (G-R) parameter ?

- G-R = G*.($\cos \delta$)²/G*. $\sin \delta$
 - Defined at 15°C and 0.005 rads/sec
- This defines a point within a Black space plot of G* vs. phase angle
- Is a point property in a similar manner to S, m, G*.sin δ , G*/sin δ , J_{nr}, etc.

Point versus shape

- Will not necessarily correlate since they are defining different parameters
- Initial relationship shown for ΔT_c versus G-R does not apply to many materials
 - Which is a more reliable indicator of performance?
 - In our existing specifications we have not used a shape parameter without a point parameter!

Point	Shape
<u>Rheology</u> S, m, G*.sinδ, G*/sinδ, J _{nr}	<u>Rheology</u> R, WLF/Arrhenius, ΔT _c ,
<i>Empirical</i>	A+VTS, etc.
Pen, R&B SP, Frass	<u>Empirical</u> PI, PVN, etc.

Thanks for listening

新疆交运大件

JAC

Questions? Comments!