NCHRP Project 20-07 / Task 400

Effect of Elevation on Rolling Thin Film Oven Aging of Asphalt Binder

Ramon Bonaquist, P.E. Advanced Asphalt Technologies, LLC

Advanced Asphalt Technologies, LLC

Lots of Help

- Dave Anderson
- Jim Rosenberger
- Gayle King
- John Malusky
- Shauna Teclemariam
- Volunteer Labs

Advanced Asphalt Technologies, LLC

Outline

- Objectives
- Approach
- Work Completed
- What's Next

Advanced Asphalt Technologies, LLC

Objectives

 Confirm or refute previous studies showing an elevation effect in properties of RTFOT residue

And if there is an effect and it is of engineering significance then....

 Improve the AASHTO T 240 procedure to minimize differences in physical properties of RTFOT residue obtained at different elevations.

Advanced Asphalt Technologies, LLC

Approach

- Perform statistical and engineering analysis of available data:
 - Western Cooperative Testing Group
 - AASHTO Resource Proficiency Samples
- Select method to minimize elevation effect
- Design, execute, and analyze an experiment to confirm viability of the selected method
- Prepare documentation
 - Recommended modifications to AASHTO T 240 with commentary
 - Report with data files

Advanced Asphalt Technologies, LLC

Statistical Analysis

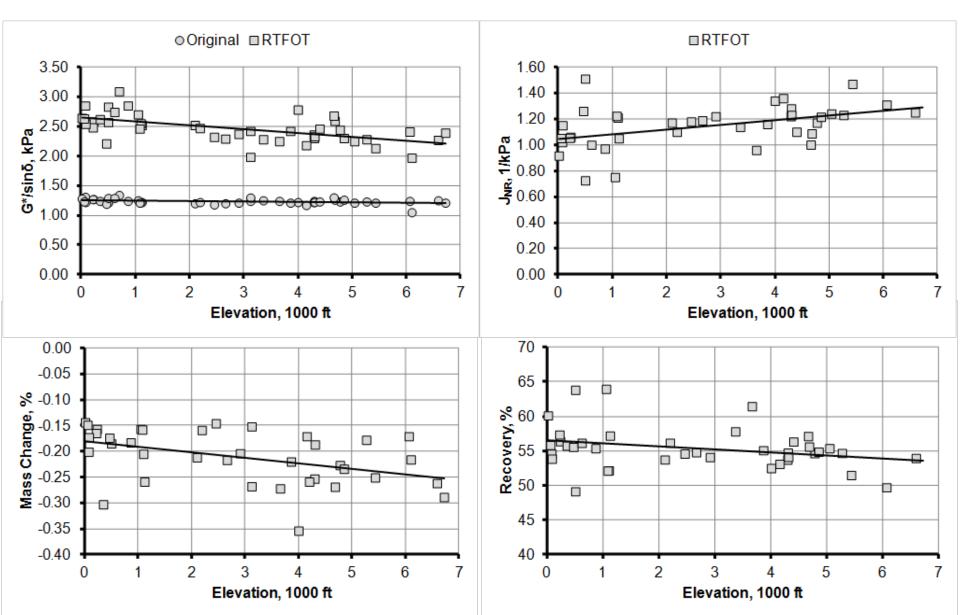
- Western Cooperative Testing Group
 - 11 binders, 1 neat, 10 modified
 - 40 labs, 1 replicate
 - 441 observations
 - 12 to 6,720 ft elevation range (uniform distribution)
- AASHTO Resource
 - 4 binders, 2 neat, 2 modified
 - 213 labs, 2 replicates
 - 1700 observations
 - 0 to 6,295 ft elevation range (68 % below 1,000 ft)

Advanced Asphalt Technologies, LLC

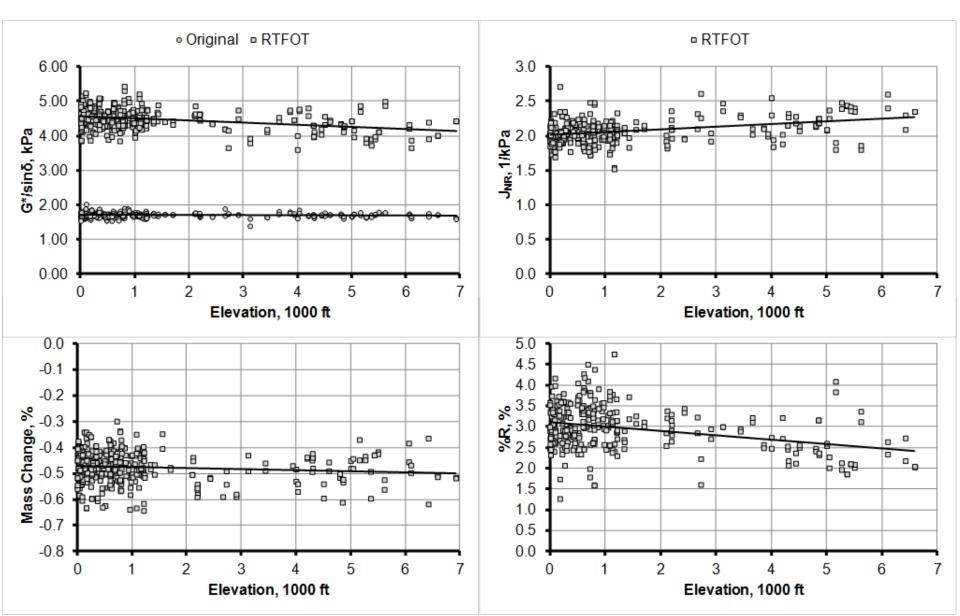
Statistical Analysis

- Properties
 - Original G*/sinδ
 - RTFOT G*/sin δ
 - Aging Index
 - J_{nr3.2}
 - $-R_{3.2}$
 - Mass Change

Advanced Asphalt Technologies, LLC

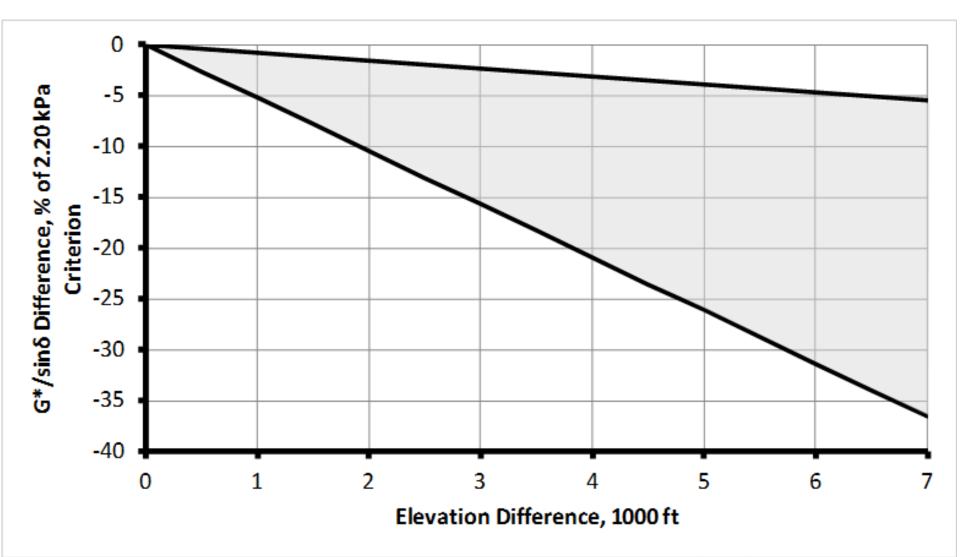

Statistical Analysis

- Approach
 - Assemble data
 - Graphical analysis
 - Systematic identification of outliers
 - Initial regression analysis as a function of elevation allowing binder dependent slopes and intercepts
 - Remove data having standardized residuals exceeding ± 2.5
 - Final regression analysis
 - Significance of elevation effect
 - Binder dependency
 - Performed by Consulting Statistician


Advanced Asphalt Technologies, LLC

WCTG Binder 552

AASHTO Resource 235/236



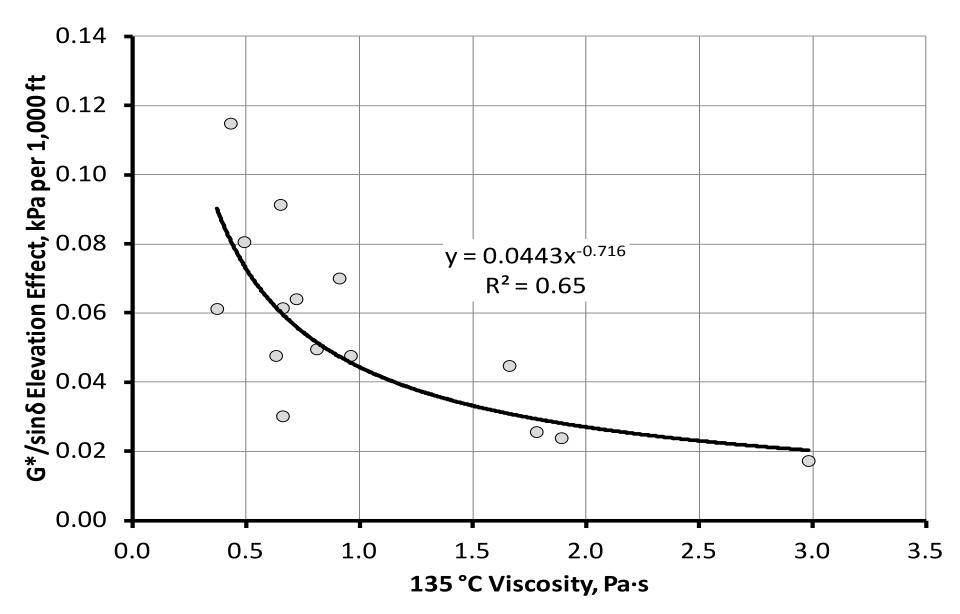
Summary of Statistically Significant Effects


Data Set	Binder	Type*	RTFOT G*/sinδ, kPa/1,000 ft	Aging Index	Mass Change, %/1,000 ft	Jnr, kPa ⁻¹ /1,000 ft	%R, %/ 1,000 ft
WCTG	551	Р	-0.0615	-0.0354	-0.0033	0.0333	-0.059
	552	Р	-0.0641	-0.0427		0.0432	-0.269
	553	Р	-0.0239	-0.0146		0.0394	-0.432
	554	Р	-0.0173	-0.0136		0.0677	-0.677
	555	N	-0.1149	-0.0740		0.0927	-0.119
	556	Р	-0.0496	-0.0251		0.0027	0.010
	557	Р	-0.0914	-0.0442		0.0204	-0.546
	560	Р	-0.0477	-0.0271		0.0416	-0.415
	561	Р	-0.0477	-0.0379		0.0593	-0.282
	562	Р	-0.0701	-0.0609		0.0249	0.720
	563	Р	-0.0448	-0.0147		0.0076	-0.413
AASHTO Resource	235/236	Ν	-0.0613	-0.0374	-0.0059	0.0384	-0.094
	239/240	N	-0.0806	-0.0412		0.0470	-0.032
	241/242	Р	-0.0302	-0.0233		0.0002	0.519
	245/246	Р	-0.0257	-0.0188		0.0236	-0.300

* N denotes neat binder, P denotes polymer modified binder

Engineering Significance of Elevation Effect: G*/sinδ

Engineering Significance of Elevation Effect: J_{nr}


What Are the Options?

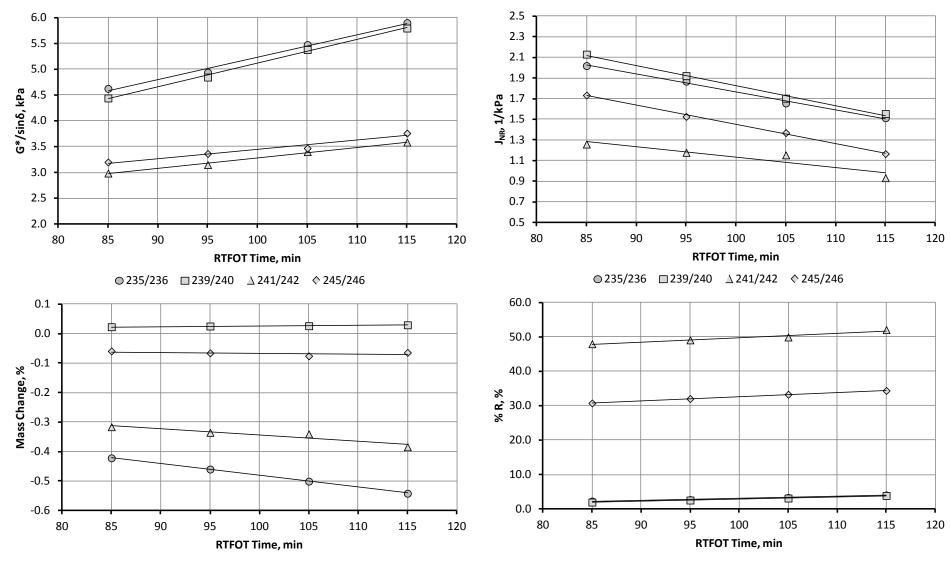
- Modify RTFOT to condition at a constant pressure
- Relate elevation effect to other measured binder properties
- Vary RTFOT temperature with elevation
- Vary RTFOT time with elevation

Advanced Asphalt Technologies, LLC

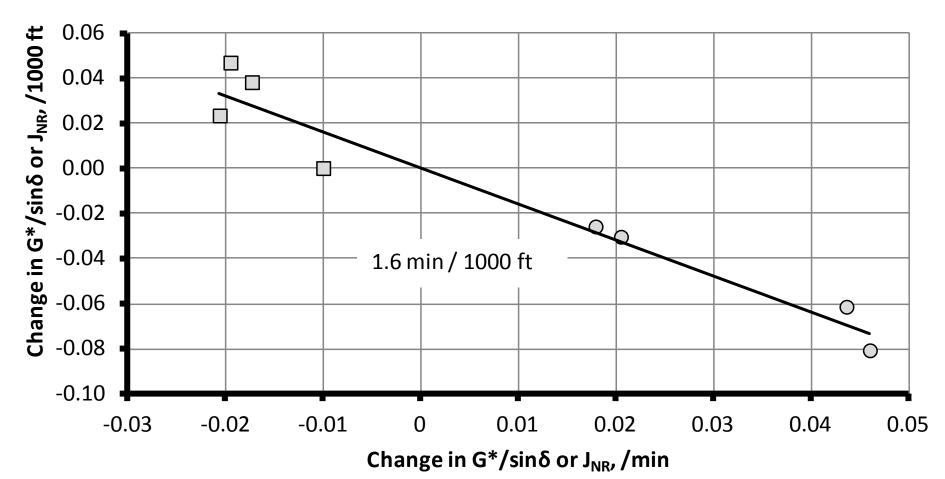
Elevation Effect Prediction

What Are the Options?

- Modify RTFOT to condition at a constant pressure
- Relate elevation effect to other measured binder properties
- Vary RTFOT temperature with elevation
- Vary RTFOT time with elevation


Advanced Asphalt Technologies, LLC

Effect of Time on RTFOT Residue Properties


◎ 235/236 □ 239/240 △ 241/242 ◊ 245/246

© 235/236 □ 239/240 △ 241/242

 245/246

Estimate of Additional RTFOT Conditioning Time

 $\bigcirc G^*/sin\delta \square JNR$

Estimate of Additional RTFOT Conditioning Time

Elevation, 1000 ft	Additional RTFOT Conditioning Time, min
0	0
1	2
2	3
3	5
4	6
5	8
6	10
7	11

Advanced Asphalt Technologies, LLC

Next Step

 Complete experimental design to confirm/improve additional time estimate

Item	Description
Number of	24, 8 in three elevation range blocks:
Laboratories	• 0 to <2500 ft
	 2500 to <5000 ft
	● ≥ 5000 ft
Number of binders	8 including neat and modified binders
RTFOT	2
conditioning times	
Responses	AASHTO T 240: mass change
	AASHTO T 315: G*/sinδ
	AASHTO T 350: $J_{nr3.2}$, and $R_{3.2}$
Analysis	Regression

Advanced Asphalt Technologies, LLC

Volunteers?

- AMRL Accreditation
- Condition 4 binders
 - 85 minutes
 - 115 minutes
- Measure mass change
- Return conditioned residue
- Estimate 16 man-hours of effort

Ramon Bonaquist Mobile 703-999-8365 aatt@erols.com

Advanced Asphalt Technologies, LLC

