DEVELOPMENT OF ASPHALT RUBBER BINDER SPECIFICATIONS IN CALIFORNIA: PROJECT UPDATE

Zia Alavi, PhD and David Jones, PhD
University of California Pavement Research Center, Davis

FHWA ETG Meeting, Ames, Iowa May, 03, 2017

Outline

- Background
- Short-term aging
- High temperature tests
- Intermediate temperature tests
- Low temperature tests
- Way forward

Background

- Update on the update given at the September 2014
 ETG meeting (Phase 1, lab-produced binder)
- Recap on asphalt rubber in California
 - AB338 (2005) requires Caltrans to use asphalt rubber in at least 35% of all AC placed
 - Asphalt rubber defined as 18-22% CRM by weight of binder
 - CRM is 100% passing #8 (2.36mm)
 - Termed "wet process", used in gap- & open-graded mixes
 - Binder QC essentially only viscosity (handheld viscometer)
 - "Terminal blend" rubber binder considered in PG-M spec
 - Caltrans 2015 mandate requires that all surface courses placed below 3,000ft are asphalt rubber mixes
- SB1 funding

Background

- Phase 1 study compared concentric cylinder with parallel plate on laboratory-produced AR binders
 - Concern about ratio between rubber particle size and gap influencing the result
 - Plate gap was 1mm or 2mm depending on particle size
 - Limited testing on 3mm and 4mm gaps due to trimming and slump issues

Phase 1 CC vs. PP

Background

- Phase 2 study on plant- produced binders and mix
 - AR binders tested with 3mm gap on 25mm and 8mm plates
 - Conventional binders tested with 1mm gap on 25mm plates and 2mm gap on 8mm plates
 - Mix testing to interpret rheological properties
- Parallel studies
 - Caltrans/Industry task group study on 3mm parallel plate gap
 - Round robin testing by 16 laboratories completed
 - UCPRC tested with concentric cylinder as well
 - Task group report in preparation
- Caltrans will decide which approach to use

Phase 2 Experiment Plan

Parameter	Number	Progress
AR binder source	5 (statewide)	Tested 2
Base binder1	??	Tested 3
AR mixes ²	5	Tested 2
PM Binders (PG-M spec) ¹	2	Tested 2
TR Binders (PG-M spec) ¹	2	Tested 2

¹ Control testing

² Beam fatigue, SCB, dynamic modulus, flow number, TSRST, etc.

Outline

- Background
- Short-term aging
- High temperature tests
- Intermediate temperature tests
- Low temperature tests
- Way forward

AR Mixing & Production Temps.

- Temperature when CRM is added to asphalt binder plus extender oil
 - 375°F to 440°F (190°C to 225°C)
- Mix production temperature
 - 375°F and 425°F (190°C to 218°C)
 - Conventional mixes typically between 290°F and 320°F (143°C to 160°C)
- Current RTFO testing temperature (163°C) is based on short-term aging of unmodified binders with no particulates

RTFO Test Method Limitations

- Current method not considered appropriate for AR binder, because:
 - Aging temperature does not simulate AR binder temperature during mix production
 - Aging of the AR binder is nonuniform due to incomplete coating of the bottles
 - Quantity of binder available after aging is often insufficient for DSR and BBR testing

Proposed Changes

Test Parameter	Current	Proposed
Temperature (°C)	163	190
Duration (minutes)	85	85
Sample size (g)	35	= to 35 of base binder1
Oven tilt (°)	zero	zero

¹ 45 grams of AR binder with 20% CRM

Modified RTFO Procedure

35 9

190°C

45 g

$G^*/sin(\delta)$ at $64^{\circ}C$

High PG Limit

Summary

Key findings

- Testing at 163°C does not appear to be appropriate for AR binders due to poor bottle coating; testing at 190°C considered to be more representative
- Higher binder stiffnesses at 190°C, as expected (increased high PG temperature by up to 9°C)
- Larger sample volume did not significantly effect results, but did help for DSR/BBR test requirements (can be adjusted to suit)
- No spillage noted with 45 gram sample (oven not tilted)
- Likely recommendation
 - Dependent on remaining tests, but will probably suggest doing RTFO test at 190°C

Outline

- Background
- Short-term aging
- High temperature tests
- Intermediate temperature tests
- Low temperature tests
- Way forward

High Temperature Tests

- Testing geometry
 - Concentric cylinder with 17mm bob and 6mm gap
- Test methods
 - Binder viscosity (for workability)
 - PG grade
 - MSCR test
 - Frequency sweep test
- Tests on both original and shortterm aged binders

CC vs. PP (Unaged at 64°C)

CC vs. PP (Unaged at 70°C)

CC vs. PP (RTFO-Aged at 64°C)

CC vs. PP (RTFO-Aged at 70°C)

CC vs. PP (% Difference @ 64°C)

CC vs. PP (% Difference @ 70°C)

Summary

- Key findings
 - Difference between CC and PP, as expected on 2 out of 5 samples
 - Difference/variability appears to depend on rubber particle size
- Likely recommendation
 - No recommendation until binder and mix testing is complete

Outline

- Background
- Short-term aging
- High temperature tests
- Intermediate temperature tests
- Low temperature tests
- Way forward

Intermediate Temperature Tests

- Modified concentric cylinder geometry based on study with Anton Paar
 - Spindle with 10 mm diameter
 - Test temperatures > 16°C (machine limits)
 - Tests are performed on RTFO+PAV aged binder
 - Separate study to check whether PAV test conditions (testing time, temperature, sample size, etc.) need to be adjusted to account for rubber particles

CC vs. PP (Aged)

CC vs. PP (Percent Difference)

Summary

- Key findings
 - Difference between CC and PP on all binders tested
 - Shrinkage, confinement in CC?
 - Trimming in PP?
 - Further testing required before conclusions can be drawn
 - Refinement of test method may be required
- Likely recommendation
 - No recommendation until binder and mix testing is complete

Outline

- Background
- Short-term aging
- High temperature tests
- Intermediate temperature tests
- Low temperature tests
- Way forward

Low Temperature Tests

- Test method modification
 - Use modified BBR mold to remedy issues associated with pouring the AR binder and preparing a uniformly shaped beam

Standard Mold

Modified Mold

Modified Mold

Standard mold

Modified mold

Mod. vs. Std. (Creep Stiffness)

Modified vs. Std. (m-value)

Summary

- Key findings
 - Modified mold much easier to use and it produces better quality specimens than conventional mold
 - Results appear to be realistic
- Likely recommendation
 - Consider modified mold for AR binders

Outline

- Background
- Short-term aging
- High temperature tests
- Intermediate temperature tests
- Low temperature tests
- Way forward

Way Forward...

- Complete testing of plant-produced AR binders and mixes (3 complete, 2 in progress)
- Compare performance-related properties of mixes with rheological properties of their corresponding binders (3 complete, 2 in progress)
- Evaluate PG grading criteria for AR binders (i.e., what do the numbers mean?)
- Report, provisional test methods, interpretation, and suggested specification language (Sept. 2017)

Thank-you

