Team members

• Chuck Paugh
• Dr. Ray Bonaquist
• Satish Belagutti
• Butch Heidler

Their efforts on the projects and their presentation support are greatly appreciated.
FHWA MATT Program

- Mobile Asphalt Testing Trailer (MATT)
- AASHTO Accredited
- Superpave™ Technology
 - Test
 - Evaluate
 - Refine
 - Improve
 - Implement
FHWA MATT’s Involvement

- Address National Pavement Issues
 - Interaction with Transportation Partners
 - FHWA Division Offices and Resource Center
 - State DOTs and Industry
 - ETG’s and TWG’s
 - Technical Support on National Initiatives
 - Hot Mix Asphalt (HMA)
 - Warm Mix Asphalt (WMA)
 - Reclaimed Asphalt Pavement (RAP)
 - Reclaimed Asphalt Shingles (RAS)
 - Ground Tire Rubber (GTR)
 - Pavement ME™ (previously Mechanistic-Empirical Pavement Design Guide - MEPDG)
Outline

• Challenges
 – Fatigue cracking
 – Thermal cracking
 – Aging (Conditioning)

• Use of different parameters
 – Low temperature cracking
 – ΔT_c
 – Master Curve
 – Glover-Rowe parameter

• Summary of Findings
Binder New Parameter (ΔT_c)

- ΔT_c is the difference between the critical low temperature determined by stiffness and relaxation criteria from BBR test
 - $\Delta T_c = S \text{ critical temp} - m \text{ critical temp}$
- As an asphalt binder ages, ΔT_c value becomes more negative
 - Indicating a loss of relaxation properties
- Important parameter related to asphalt binder durability
Christensen-Anderson model used
• Project Location:
 – Wisconsin

• Production of HMA mixes with various content of recycled materials:
 – Recycled Asphalt Pavement (RAP): 13 to 40 percent of total mix
 – Recycled Asphalt Shingles (RAS): 3 to 6 percent of total mix
 – Binders
 ✓ PG 52-24
 ✓ PG 58-28
 ✓ PG 58-34
 ✓ Additives: SBS, WMA
Mix Designs

<table>
<thead>
<tr>
<th>Mix 9</th>
<th>Mix 9.5</th>
<th>Mix 10</th>
<th>Mix 12</th>
<th>Mix 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP = 32%</td>
<td>RAP = 32%</td>
<td>RAP = 32%</td>
<td>RAP = 13%</td>
<td>RAP = 13%</td>
</tr>
<tr>
<td>RAS = 5%</td>
<td>RAS = 5%</td>
<td>RAS = 5%</td>
<td>RAS = 3%</td>
<td>RAS = 3%</td>
</tr>
<tr>
<td>ABR (1) = 0.50</td>
<td>ABR = 0.50</td>
<td>ABR = 0.50</td>
<td>ABR = 0.25</td>
<td>ABR = 0.25</td>
</tr>
<tr>
<td>PG 58-28</td>
<td>PG 58-28</td>
<td>PG 52-34</td>
<td>PG 58-28</td>
<td>PG 52-34</td>
</tr>
<tr>
<td>VA = 3.5%</td>
</tr>
<tr>
<td>Pb = 2.7%</td>
<td>Pb = 2.7%</td>
<td>Pb = 2.7%</td>
<td>Pb = 4.0%</td>
<td>Pb = 4.0%</td>
</tr>
<tr>
<td>No additive</td>
<td>No additive</td>
<td>No additive</td>
<td>No additive</td>
<td>No additive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mix 1</th>
<th>Mix 2</th>
<th>Mix 4</th>
<th>Mix 5</th>
<th>Mix 6</th>
<th>Mix 7</th>
<th>Mix 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP = 40%</td>
<td>RAP = 40%</td>
<td>RAP = 33%</td>
<td>RAP = 33%</td>
<td>RAP = 33%</td>
<td>RAP = 14%</td>
<td>RAP = 14%</td>
</tr>
<tr>
<td>RAS = 6%</td>
<td>RAS = 6%</td>
<td>RAS = 4%</td>
</tr>
<tr>
<td>ABR = 0.65</td>
<td>ABR = 0.65</td>
<td>ABR = 0.50</td>
<td>ABR = 0.50</td>
<td>ABR = 0.50</td>
<td>ABR = 0.35</td>
<td>ABR = 0.35</td>
</tr>
<tr>
<td>VA = 3.5%</td>
<td>VA = 4.0%</td>
<td>VA = 4.0%</td>
</tr>
<tr>
<td>Pb = 1.62%</td>
<td>Pb = 1.62%</td>
<td>Pb = 2.45%</td>
<td>Pb = 2.45%</td>
<td>Pb = 2.45%</td>
<td>Pb = 3.0%</td>
<td>Pb = 3.0%</td>
</tr>
<tr>
<td>No additive</td>
</tr>
</tbody>
</table>

Notes:
1. ABR = Asphalt Binder Replacement
2. Warm mix additive used for rejuvenation purpose only
As-recovered Binder Results

BBR Low Temperature

- **Effect on Cracking**
 - ABR has an effect on Critical Cracking Temp and the effect is nearly linear
 - ΔT_c for the recovered binder is getting more negative when the ABR increases
As-recovered Binder Results

Master Curve

- **Effect of increasing ABR**
 - The master curves become flatter
 - Similar to effect of aging
Conditioned Binder Results

Master Curve

- Conditioning effect
 - The master curves become flatter
 - R increasing and ω_c decreasing
• **ABR increasing similar to more conditioning**

 – The master curves become flatter

 – Master curves for the as-recovered binders are flatter than the master curve for PG 58-28 binder after 20 hrs PAV
• **Effect of Long Term Conditioning**

 – Extended PAV conditioning decreases ΔT_c approximately 3.5 °C
 – The difference between 20 and 40 hrs conditioning remains relatively constant as the ABR increases.
Cracking Susceptibility

Glover-Rowe parameter

- **Effect of increasing ABR**
 - The Glover-Rowe parameter increases
 - After standard PAV, the recovered binder from all mixtures exceed the recommended limit for the onset of damage (except the lowest ABR)!
Summary of Findings I

- For the recycled materials used, ΔT_c decreases at the rate of about 0.2 °C per percent ABR.

- The rate of change of the Glover-Rowe parameter with PAV condition time increases with increasing ABR.

- For extended PAV conditioning, binders becoming highly m-value controlled.

- Master curve becomes more flat as conditioning increases or ABR % increases.
• Project Location:
 – Arizona

• Open Graded Friction Course (OGFC) mixtures:
 – Three different Terminal blended Asphalt Rubbers
 – Hybrid Binders: GTR + SBS
 ✓ PG70-22 TR+ (contains 8 % of GTR)
 ✓ PG70-22 TR+ SBS (8 % GTR + 2 % SBS; solubility limit of 97%)
 ✓ PG70-22 TR+ S92 (8 % GTR + 2 % SBS; solubility limit of 92%)
Long Term Conditioning

Low Temperature Cracking

<table>
<thead>
<tr>
<th>Asphalt Binder</th>
<th>PAV Cond Time, (hr)</th>
<th>AASHTO M 320 Table 1, (°C)</th>
<th>AASHTO M 320 Table 2, (°C)</th>
<th>ABCD, (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 70-22 TR+</td>
<td>20</td>
<td>-28.8</td>
<td>-29.5</td>
<td>-26.6</td>
</tr>
<tr>
<td>PG 70-22 TR+</td>
<td>40</td>
<td>-24.5</td>
<td>-24.8</td>
<td>-26.3</td>
</tr>
<tr>
<td>PG 70-22 TR+ (S 92)</td>
<td>20</td>
<td>-32.0</td>
<td>-31.8</td>
<td>-32.3</td>
</tr>
<tr>
<td>PG 70-22 TR+ (S 92)</td>
<td>40</td>
<td>-26.0</td>
<td>-26.7</td>
<td>-31.0</td>
</tr>
<tr>
<td>PG 70-22 (SBS)</td>
<td>20</td>
<td>-30.9</td>
<td>-29.7</td>
<td>-30.5</td>
</tr>
<tr>
<td>PG 70-22 (SBS)</td>
<td>40</td>
<td>-23.0</td>
<td>-27.8</td>
<td>-29.4</td>
</tr>
</tbody>
</table>

- Reasonable agreement between the three measurements for 20 hrs PAV conditioning.
- The ABCD is less sensitive than the other two to conditioning time.
- Doubling PAV time:
 - 0.9 °C ↑ of cracking temp (ABCD)
 - 6.1 °C ↑ of cracking temp (Table 1)
 - 3.9 °C ↑ of cracking temp (Table 2)
Long Term Conditioning

Intermediate grade & ΔT_c

<table>
<thead>
<tr>
<th>AsphaltBinder</th>
<th>PAV Conditioning Time, (hr)</th>
<th>AASHTO M 320 Table 1 Intermediate Temperature Continuous Grade, (°C)</th>
<th>AASHTO M 320 Table 1 ΔT_c, (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 70-22 TR+</td>
<td>20</td>
<td>20.7</td>
<td>0.4</td>
</tr>
<tr>
<td>PG 70-22 TR+</td>
<td>40</td>
<td>24.1</td>
<td>-2.7</td>
</tr>
<tr>
<td>PG 70-22 TR+ (S 92)</td>
<td>20</td>
<td>13.1</td>
<td>-3.1</td>
</tr>
<tr>
<td>PG 70-22 TR+ (S 92)</td>
<td>40</td>
<td>17.4</td>
<td>-6.9</td>
</tr>
<tr>
<td>PG 70-22 (SBS)</td>
<td>20</td>
<td>15.1</td>
<td>-1.6</td>
</tr>
<tr>
<td>PG 70-22 (SBS)</td>
<td>40</td>
<td>19.9</td>
<td>-8.4</td>
</tr>
</tbody>
</table>

- The low temperature grade becomes much more **m-value** controlled for 40 hrs vs. 20 hrs PAV conditioning.
- The ΔT_c parameter dropped **lower than -5.0 °C** for the PG 70-22 TR+ (S 92) and the PG 70-22 (SBS) after extended PAV conditioning.
- These changes indicate that the in-service aging will likely be greater for the PG 70-22 TR+ (S 92) and PG 70-22 (SBS).
Long Term Conditioning

Master Curve - PG 70-22 TR+ (S 92)

More conditioning causes the master curves become flatter with R increasing and ω_c decreasing.
Long Term Conditioning

Glover-Rowe Parameter

- After 40 hrs of PAV conditioning, all binders have Glover-Rowe parameters above the recommended limit for the onset of cracking.
- The slope for these binders is about 5 kPa per hr of PAV conditioning over the first 20 hr increasing to about 16 kPa per hr for extended PAV conditioning.
• For extended PAV conditioning, binders becoming highly \textit{m-value} controlled.

• The master curves became \textit{flatter} (increasing R value and decreasing ω_c) with \textit{increased laboratory} conditioning.

• \textit{40 hrs PAV} conditioning may \textit{better differentiate} between different materials.
Mobile Asphalt Pavement Materials Lab
 – Site Visits
 – Field Data/Testing/Evaluation
 – Use/Demo Emerging Test Devices
 – POC: Matthew Corrigan
Thank You!!

FHWA’s Mobile Asphalt Testing Trailer
Office of Asset Management, Pavement, and Construction

www.fhwa.dot.gov/pavement/asphalt