2008 – 2010 TRIAL SECTIONS

Laboratory & Field Evaluations
Trial Sections Guidelines

Mix Properties

<table>
<thead>
<tr>
<th>Test Procedures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Materials Moisture</td>
<td>Total Evaporable Moisture Content of Aggregate T255</td>
</tr>
<tr>
<td>2. Mixes residual moisture</td>
<td>Moisture Content of Asphalt Mixes T329</td>
</tr>
<tr>
<td>3. Volumetrics</td>
<td>Comparative VMA and air voids R35</td>
</tr>
</tbody>
</table>
| 4. Moisture Sensitivity | - Tensile Strength Ratio with Freeze/Thaw T283
- Hamburg Loaded Wheel Test, HLWT T324 |
| 5. Mix Mechanical Performances | - APA rut susceptibility / HLWT TP63
- SPT Dynamic Modulus and Flow number TP62 |
| 6. Mix Low T° cracking | - Thermal Stress Restrained Specimen Test / DC(T) Fracture En. TP10 |
| 7. Binders Properties | - Recovered binders’ comparative PG study, including viscosity and the Multi Stress Creep & Recovery (MSCR) test. T315 |

Production Data

- Plant set-up
- Actual % Water added, Actual % RAP added
- Production rate, Fuel Consumption per ton
- Mix T° in Chute and in trucks
- Silo retention time
- Gas T° @ Dryer exit, Baghouse Inlet & Outlet
- O2, CO, NOx readings at fan

Construction Data

- Temperature in-coming Trucks
- Density vs. Mat temperature vs. Number of roller passes.
- Cores densities
I-55 / 57 WMA Project
2009-2010 Missouri

Project:

- I-55-57 PCC highway rehabilitation
- 260,000 tons Asphalt Mix in 2 years.
- 66 lanes-miles / 106 km
- Binder course design: SP 190 PG 76-22
 0% RAP – 125 Gyrations
- Surface Course: Hot Mix Stone Matrix
- Shoulders: Marshall Design
- Mobile Plant: 400 t/h Parallel Flow Cedar Rapids
 70 tons surge bin
- Foam Device: MAXAM – AQUABLACK.
Project

- Rte 132 Clermont Co, Ohio - 10.2 miles
- Part of 2008 ODOT 6 WMA DG Field Trials
- Plant: Double Drum ASTEC w/ DG
- 7,500 tons intermediate course PG 64-28P;
- 6,500 tons surface course: Type 1H Heavy Traffic - 75 blows 10% RAP PG 70-22P
Foamed AC expansion facilitates coating at lower T°

Foamed AC is “Shear Thinning”:

- High Viscosity without Shear
- Low Viscosity with Shear
I-55 / 57 WMA Project

- FHWA Mobile Laboratory on site
- AMPT Asphalt Material Performance Testing
I-55 / 57 WMA Project

Contract Specifications Control

Volumetrics

<table>
<thead>
<tr>
<th></th>
<th>Gsb</th>
<th>AC (%)</th>
<th>Gmm</th>
<th>Gse</th>
<th>Pba (%)</th>
<th>VMA (%)</th>
<th>Va (%)</th>
<th>VFA (%)</th>
<th>Lab Comp. T°</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>2.689</td>
<td>4.4</td>
<td>2.520</td>
<td>2.698</td>
<td>1.0</td>
<td>13.5</td>
<td>3.4</td>
<td>74.4</td>
<td>315°F</td>
</tr>
<tr>
<td>WMA</td>
<td>2.687</td>
<td>4.5</td>
<td>2.519</td>
<td>2.705</td>
<td>1.9</td>
<td>13.4</td>
<td>3.2</td>
<td>75.9</td>
<td>290°F</td>
</tr>
</tbody>
</table>

Field Density

<table>
<thead>
<tr>
<th></th>
<th>I-55 - I-57</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HMA</td>
</tr>
<tr>
<td>Average Production T°</td>
<td>347°F / 175°C</td>
</tr>
<tr>
<td>Compaction T° range</td>
<td>320-230°F / 160-110°C</td>
</tr>
<tr>
<td>Average final compaction, % Gmm</td>
<td>94%</td>
</tr>
</tbody>
</table>
Moisture Sensitivity

Tensile Retained Strength Test – ASTM D4867

Delta I-55 / 57
Delta Company
Missouri

Rte 132
Barrett Paving
Ohio
Hamburg Loaded Wheel Test

Classifies asphalt mixtures in terms of rutting potential and moisture susceptibility.
APA Rutting susceptibility
Classifies asphalt mixtures in terms of rutting potential

Delta I-55 SP190 PG 76-22 MAXAM Trial
APA, 100lbs. 45.4 kg, 100 PSI 689.5 kPa, 64°C,

BPMI MWS Rte 132 PG 70-22 DG Trial
APA, 100lbs. 45.4 kg, 100 PSI 689.5 kPa, 64°C
AMPT Dynamic Modulus

Measures the stiffness of the mixtures at service loading frequencies and temperatures.

Delta 1-55 HMA & WMA E* Mastercurves @ 20°C reference Temperature

Rte 132 HMA & DG WMA E* Mastercurves @ 20°C reference Temperature

Dynamic Modulus: -10% in average
Low Temperature Cracking
Disc-Shaped Compact Tension Test DC(T) ASTM D7313
Fracture Energy – ATREL – Rantoul IL.

I-55 HMA Control – WMA Average Fracture Energy

DC (T) Fracture Energy at PG Low T°C +10°C vs. Cracking - From Buttlar et al. (2010)

Fracture Energy +25%
I-55 / 57 WMA Project

Binder Testing Results

- Superpave PG results

<table>
<thead>
<tr>
<th>Site Information</th>
<th>I-55</th>
<th>I-57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original PG binder</td>
<td>PG 76-22 (80.1 - 23.9)</td>
<td>PG 76-22 (76.4 - 23.2)</td>
</tr>
<tr>
<td>Recovered from HMA</td>
<td>PG 82-16 (82.8 - 21.7)</td>
<td>PG 76-22 (77.8 - 24.0)</td>
</tr>
<tr>
<td>Recovered from WMA</td>
<td>PG 76-16 (80.6 - 21.3)</td>
<td>PG 76-22 (78.8 - 23.7)</td>
</tr>
</tbody>
</table>

Multi-Stress & Recovery Test (MSCR)

- Jnr Creep Compliance MCR 64°C
- % Recovery MSCR 64°C
I-55 / 57 WMA Project

Gel Permeation Chromatography

- Progressive Degradation of the Polymer Network with Temperature

![Graph showing decreasing molecular weight with temperature](image-url)
Field Compaction Control

Mat Temperature and density at recorded vs. compaction energy (roller passes)

- WMA full density achieved @ -30°F
- Below 212°F - 200°F similar compactability as HMA

I-55 / 57 WMA Project

Mat Density vs. Surface Temperature & Roller Passes

5 vibratory passes 2 Break Down rollers close to each other

2 Break Down rollers in tandem behind paver 6 passes vibratory + 1 static
I-55 / 57 WMA Project

Plant Controls: Emissions & Energy

<table>
<thead>
<tr>
<th></th>
<th>Av. HMA</th>
<th>Av. WMA</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix chute T°</td>
<td>350°F</td>
<td>307°F</td>
<td>-43°F</td>
</tr>
<tr>
<td></td>
<td>177°C</td>
<td>153°C</td>
<td>-24°C</td>
</tr>
<tr>
<td>CO ppm</td>
<td>1308.0</td>
<td>465.2</td>
<td>-64%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Av Mix T°</th>
<th>Av. Agg. Moist (%)</th>
<th>Av. KBTUs/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>June through December 2009</td>
<td>347°F 175°C</td>
<td>1.8</td>
<td>241</td>
</tr>
<tr>
<td>HMA</td>
<td>85,467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMA</td>
<td>70,644</td>
<td>300°F 149 °C</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>156,111</td>
<td>-47°F -26°C</td>
<td>-15%</td>
</tr>
</tbody>
</table>
MAIN FINDINGS

Laboratory Volumetrics – Laydown & Field Compaction:
- Lab volumetrics & Field Compaction duplicated @ -30°F in average
- Below 212°F, similar compactability as HMA

Polymer-Modified WMA Performance:
- Slightly lower Moduli in the linear viscoelastic domain of very small deformations
 - Due to lesser binder aging > better resistance to low T cracking
- Better resistance to non-linear plastic deformations
 - Due to the lesser degradation of the Polymer network

Emissions & Energy
- Average 25°C / 45°C drop > -64% CO & -15% Energy