Moisture Sensitivity of WMA
A Review & Look to the Future

NCHRP 09-49 Performance of WMA
Stage I - Moisture Susceptibility
A. Epps Martin / C. Estakhri

2nd International Warm-Mix Conference
October 12th, 2011
Outline

- Objectives & Research Plan
- Review
 - Literature
 - Agency and Industry Survey
- Future
 - Phase II Work Plan
Objectives

- Assess Effect of WMA Technologies on Moisture Susceptibility
- Develop Guidelines for Identifying and Limiting Moisture Susceptibility in WMA Pavements
Research Plan

PHASE I
Evaluation of WMA Projects
- Task 1. Survey Agencies
- Task 2. Collect & Assess Information
- Task 3. Develop Work Plan
- Task 4. Document Results

PHASE II
Investigation of WMA Moisture Susceptibility
- Task 5. Conduct Experiment
 - 5.1 Reasons & Time Horizon
 - 5.2 Standard Tests & Methods to Minimize
 - 5.3 Specimen Types
- Task 6. Document Results

PHASE III
Guidelines for Minimizing Moisture Susceptibility
- Task 7. Develop Guidelines
- Task 8. Recommended Revisions
- Task 9. Document Results

PHASE IV

Texas Transportation Institute
Research Plan
Phase I – Evaluation of WMA Projects

- DOT’s
- Contractors
- Equipment Manufacturers
- Additive Suppliers
- Internal/External Advisory Groups

TASK 1.0
Survey to Identify WMA Pavements

TASK 2.0
Information Search & Review

TASK 3.0
- PHASE II Work Plan
 - Select Pavements
 - Field Evaluation
 - Laboratory Tests

TASK 4.0
Interim Report Panel Meeting
Literature Review

WMA State Usage in 2010

Source: Prowell et al. 2011, Warm-Mix Asphalt: Best Practices
Literature Review

WMA BENEFITS
- Decreased
 - Energy consumption
 - Emissions and odors
 - Plant wear
 - Fumes and dust
 - Binder aging
- Increased/Improved
 - Haul distance
 - Construction day/season
 - Compactability
 - Workability
 - Construction conditions

WMA ISSUES
- Compaction in the laboratory and the field
- Proper coating of the aggregates with binder
- Conditioning/Curing in the laboratory
- Mix design procedures
- Rutting susceptibility
- Moisture Susceptibility
Literature Review

WMA TECHNOLOGIES

- Foaming
- Additive

MOISTURE MECHANISMS

- Loss of the ADHESIVE bond between the binder or mastic and the aggregates
- Loss of COHESIVE strength in the binder or mastic in the presence of moisture
Literature Review
Laboratory Characterization

<table>
<thead>
<tr>
<th>Category</th>
<th>Tests & Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncompacted Loose Mixtures or Component Materials</td>
<td>Boiling Water Test ASTM D3652</td>
</tr>
<tr>
<td></td>
<td>Ultrasonic Accelerated Moisture Conditioning (UAMC)</td>
</tr>
<tr>
<td></td>
<td>Net Absorption Test (NAT)</td>
</tr>
<tr>
<td></td>
<td>Surface Free Energy (SFE)</td>
</tr>
<tr>
<td></td>
<td>Bitumen Bond Strength (BBS)</td>
</tr>
<tr>
<td>Comparison of Conditioned and Unconditioned Mixtures</td>
<td>Modified Lottman Test ITS/TSR AASHTO T283</td>
</tr>
<tr>
<td></td>
<td>Immersion-Compression Test AASHTO T165</td>
</tr>
<tr>
<td></td>
<td>Energy Ratio (ER)</td>
</tr>
<tr>
<td></td>
<td>E*/ECS AASHTO TP 62 & AASHTO TP 34</td>
</tr>
<tr>
<td></td>
<td>Resilient Modulus (M<sub>R</sub>) ASTM D4123</td>
</tr>
<tr>
<td></td>
<td>Dynamic Mechanical Analyzer (DMA)</td>
</tr>
<tr>
<td>Repetitive Loading in the Presence of Water</td>
<td>Hamburg Wheel-Tracking Test (HWTT) AASHTO T324</td>
</tr>
<tr>
<td></td>
<td>Asphalt Pavement Analyzer (APA) AASHTO TP 63</td>
</tr>
<tr>
<td></td>
<td>Model Mobile Load Simulator 3</td>
</tr>
<tr>
<td></td>
<td>Moisture Induced Stress Tester (MIST)</td>
</tr>
</tbody>
</table>
Literature Review

Laboratory Characterization

- **Modified Lottman Test**
 - Currently used in the majority of states
 - Able to discriminate mixtures with very different moisture susceptibility

- **Resilient Modulus Test**
 - Non-destructive
 - Measure tensile stiffness
 - Easy to perform, inexpensive

- **Hamburg Wheel-Tracking Test**
 - Good repeatability
 - Improved correlation with field performance
Literature Review

Moisture Susceptibility of WMA

- Incorporation of additional moisture with foaming
- Incomplete aggregate drying during production
- Reduced binder absorption by the aggregates
- Reduced binder-aggregate bond strength with some chemical additives
Literature Review

WMA Mixture Performance

- **Rutting**
 - Mixed results
 - Lime/anti-strip agents improve rutting resistance

- **Moisture susceptibility**
 - WMA more moisture susceptible
 - Improved WMA ITS and TSR values with longer/higher curing time/temperature & field aging
 - Lime/anti-strip agents reduce moisture susceptibility
Literature Review

WMA Mixture Performance

- Incomplete drying of the aggregates
 - Decreased ITS values
 - Function of aggregate type, WMA technology, initial aggregate moisture content, production temperature

- Binder-Aggregate bond strength
 - Reduced adhesion with some chemical additives
 - Function of binder type
Literature Review

WMA Mixture Performance

- Field Performance
 - Equal or better than HMA
 - No sign of premature moisture damage

- Trial project in Kimbolton, OH (2006)
 - Signs of raveling, especially WMA additive section
 - Poor construction practices and lower placement temperatures

- Trial project in Franklin, TN (2007)
 - Raveling on HMA and WMA sections after 1 yr
 - WMA additive affected in shaded areas
 - Poor construction practices, variable densities
Agency and Industry Survey
Web-Based Survey

- **Objective**
 - Identify WMA pavements with moisture damage
- **Contacts**
 - 50 State DOTs (+Washington DC and Puerto Rico)
- **Topics**
 - WMA use and materials
 - Mix design
 - Field performance
 - Upcoming WMA projects
- **Response rate 92% of states**
Agency and Industry Survey

Current Use of WMA

Current Use of WMA:
- Green: Routine Projects
- Yellow: Trial Projects
- Red: Have not used WMA
- Blue: No Response

Map showing the current use of WMA across the United States, with states colored according to the legend.
<table>
<thead>
<tr>
<th>Current Use of WMA</th>
<th>52% Trial Projects</th>
<th>41% Routine Use</th>
<th>7% Not used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity of WMA</td>
<td>35% 2-5 Projects</td>
<td>28% 5-10 Projects</td>
<td>22% Routine</td>
</tr>
<tr>
<td>Preferred Technologies</td>
<td>DBG, Evotherm, Sasobit, Advera, Terex, and AQUABlack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of Anti-stripping Additives</td>
<td>52% Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational Practice</td>
<td>80% Allow</td>
<td>11% Not Allow</td>
<td>5% Require</td>
</tr>
<tr>
<td>Moisture Susceptibility Testing in Mix Design</td>
<td>69% Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Moisture Susceptibility Tests</td>
<td>65% TSR</td>
<td>20% HWTT</td>
<td>15% Others</td>
</tr>
<tr>
<td>Observed Field Pavement Failure or Distress</td>
<td>93% None (Moisture Damage)</td>
<td>5% Compaction Issues</td>
<td>2% Thermal Cracking</td>
</tr>
</tbody>
</table>
Agency and Industry Survey
Phone Interviews

- **Objective**
 - Identify candidate WMA pavements w/HMA control, multiple technologies, environmentally diverse

- **Contacts**
 - 16 State DOTs/Researchers
 - 3 Equipment Manufacturers/Additive Suppliers
 - 6 Contractors

- **Topics**
 - Materials and WMA Technology/Process
 - Mix Design and Location
 - Construction
 - Performance
Agency and Industry Survey
Web & Phone Interview Results

<table>
<thead>
<tr>
<th>Separate WMA Mix Design Specification</th>
<th>Yes (1 State)</th>
<th>None or Under Development (Others)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compaction Issues</td>
<td>Different roller pattern</td>
<td>High densities</td>
</tr>
<tr>
<td>Observed Performance</td>
<td>Thermal cracking during first winter season (1 State)</td>
<td>No observed moisture susceptibility distresses</td>
</tr>
<tr>
<td>Costs</td>
<td>For the state, $WMA = $HMA</td>
<td>For the contractor, $WMA > $HMA due to initial capital investment</td>
</tr>
</tbody>
</table>
PHASE I
Evaluation of WMA Projects
Task 1. Survey Agencies
Task 2. Collect & Assess Information
Task 3. Develop Work Plan
Task 4. Document Results

PHASE II
Investigation of WMA Moisture Susceptibility
Task 5. Conduct Experiment
5.1 Reasons & Time Horizon
5.2 Standard Tests & Methods to Minimize
5.3 Specimen Types
Task 6. Document Results

PHASE III
Guidelines for Minimizing Moisture Susceptibility
Task 7. Develop Guidelines
Task 8. Recommended Revisions
Task 9. Document Results

PHASE IV
Task 10. Prepare Final Report
Phase II Work Plan

- Select WMA pavements
- Evaluate moisture susceptibility of different specimen types (LMLC, PMLC, PMFC)
- Identify laboratory conditioning/curing protocols before compaction (LMLC, PMLC)
- Evaluate time horizon for WMA (LMLC, PMFC)
- Identify effect of anti stripping agents on WMA moisture susceptibility (LMLC)
- Evaluate effect of free water content on WMA moisture susceptibility (PMLC)
Phase II Work Plan

WMA Pavements Selection

- Iowa (Wet, Freeze)
- Texas (Wet, No-Freeze)
- Montana (Dry, Freeze)
- New Mexico (Dry, No-Freeze)
- Florida (Wet, No-Freeze)

Specimen type evaluation: all 5 Pavements
Conditioning/curing, time horizon, anti stripping agents: IA and TX
Free water content: FL
Phase II Work Plan

WMA Pavements Selection

Environmental Zones

- Wet-Freeze
- Dry-Freeze
- Dry-No Freeze
- Wet-No Freeze
Phase II Work Plan
Moisture Susceptibility Evaluation

- AASHTO T283 Modified Lottman Test (TSR)
 - 1 Freeze-Thaw (F/T) Cycle

- Resilient Modulus Test (M_R)

- Hamburg Wheel-Tracking Device (HWTT)
Phase II Work Plan

Overall (Specimen Type)

- **LMLC (IA, TX)**
 - As designed (anti strip)
 - Moisture content
 - \(M_R \), TSR, & HWTT
- **PMLC @ TTI (all 5)**
- **PMLC on site (IA, TX, MT, FL-TSR only, NM?)**
- **PMFC (Cores)**
 - Total and accessible AV
 - At construction, after 3-4 months, after 1 yr

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>LMLC</th>
<th>PMLC @ 2 locations</th>
<th>PMFC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_R)</td>
<td>TSR</td>
<td>HWTT</td>
</tr>
<tr>
<td>WMA 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WMA2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Phase II Work Plan

Laboratory Conditioning/Curing Protocol

Field Mixture
- **WMA**
- **HMA**

Laboratory Mixture

- **Stiffness vs. Log Time (days)**
- **Stiffness vs. Time @ 275°F (hours)**

<table>
<thead>
<tr>
<th>WMA</th>
<th>Log Time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 10 100 1000 10000 100000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HMA</th>
<th>Log Time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 10 100 1000 10000 100000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time @ 275°F (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4 6 8 10</td>
</tr>
</tbody>
</table>
Phase II Work Plan
Laboratory Conditioning/Curing Protocol

\(M_R \) tests & N to 7%AV for IA, TX

LMLC (as designed) Specimens

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>(2hr@T_{wc} + 16hr@60 \ C) +(2hr@T_{wc} *)</th>
<th>(T_{wc})</th>
<th>225 F</th>
<th>275 F (135 C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMA 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X X X X X X X</td>
</tr>
<tr>
<td>WMA 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X X X X X X X</td>
</tr>
<tr>
<td>HMA</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

PMLC (@ TTI) Specimens

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>(16hr@60 \ C + 2hr@T_{wc} *)</th>
<th>(T_{wc})</th>
<th>275 F (135 C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMA 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WMA 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Phase II Work Plan

Time Horizon

FIRST STEP
- IA, TX
- M_R tests on LMLC
- after selected lab conditioning/curing
- same specimen
 - Aged at 140°F (60°C) for 1w, 2w, 4w, 8w
- time to achieve equivalent stiffness
Phase II Work Plan

Time Horizon

SECOND STEP

- IA, TX
- TSR, HWTT, and \(M_R \) tests on LMLC
- \(t_{\text{equivalent}} \) within \(t_A \) and \(t_B \)
- Aging
 - 5 days @ 185°F (85°C)
 - \(t_A \) & \(t_B \) @ 140°F (60°C)
- Compare to \(M_R \) on PMFC
Phase II Work Plan

Time Horizon

1st Step: M_R tests for IA, TX

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Selected cond/cure</th>
<th>1 wk @ 60 C</th>
<th>2 wks @ 60 C</th>
<th>4 wks @ 60 C</th>
<th>8 wks @ 60 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMA 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WMA 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2nd Step: TSR, HWTT, and M_R tests for IA, TX

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>5 days @ 185 F (85 C)</th>
<th>$t_A @ 140 F$ (60 C)#</th>
<th>$t_B @ 140 F$ (60 C)#</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMA 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WMA 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Phase II Work Plan

Anti Stripping Agents

- IA, TX
- LMLC specimens
- Common amine-based liquid anti stripping agent

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>As Designed</th>
<th>+ Lime</th>
<th>+ Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_R</td>
<td>TSR</td>
<td>M_R</td>
</tr>
<tr>
<td>WMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Phase II Work Plan

Free Water Content Effects (FL, PMLC)

<table>
<thead>
<tr>
<th>Aggregate Type</th>
<th>Rap Content, %</th>
<th>Mixture Type</th>
<th>Water Content, %</th>
<th>M_R</th>
<th>TSR</th>
<th>HWTT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Granite</td>
<td>0</td>
<td>HMA</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMA</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMA</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Limestone</td>
<td>0</td>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMA</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMA</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Phase II Work Plan
Analysis and Anticipated Results

Laboratory Conditioning/Curing
 – Recommended protocol

Time Horizon
 – Relationship between stiffness of PMFC cores @ construction and stiffness of LMLC specimens
 • At construction, after 3-4 months and 1 year
 – Continued monitoring of existing WMA pavements exhibiting moisture damage
 • Performance data
 • Coordination with NCHRP 9-47 and 9-49A
Phase II Work Plan

Analysis and Anticipated Results

Effectiveness of Standard Test Methods to Predict and Materials and Methods to minimize moisture susceptibility

- Inclusion/Exclusion of lime & anti stripping agents
- Recommended test

Effect of Specimen Type

- Volumetrics, stiffness, & mixture performance
- Recommendation for acceptance testing
Contacts

- Amy Epps Martin a-eppsmartin@tamu.edu
- Cindy Estakhri c-estakhri@tamu.edu
- Edith Arambula e-arambula@ttimail.tamu.edu
- Jon Epps j-epps@tamu.edu
- Bob Lytton r-lytton@civil.tamu.edu
- Eun Sug Park e-park@ttimail.tamu.edu
- Fan Yin
- Lorena Garcia
QUESTIONS?
Backup

Number of Gyrations Required to Achieve Target Density (Estakhri, 2011)
Backup

Effect of Curing Time on Rut Depth for WMA Cured at 250 F (121 C) (Estakhri, 2011)
Effect of Curing Time on Rut Depth for WMA Cured at 275°F (135°C) (Estakhri, 2011)