NCHRP 9-43
Mix Design Practices for Warm Mix Asphalt

Ramon Bonaquist, P.E.
Chief Operating Officer
Advanced Asphalt Technologies, LLC
Acknowledgements

• Project 9-43 Panel
• Subcontractors
 – Quality Engineering Solutions
 – University of Massachusetts - Dartmouth
 – University of Wisconsin – Madison
 – Western Research Institute
• WMA Technology Providers
• Agencies and Contractors
Outline

• Brief Overview of NCHRP Project 9-43
• NCHRP Project 9-43 Conclusions
• NCHRP Project 9-43 Products
• Review of the Proposed Appendix to AASHTO R35
• What to Expect When Using the Appendix
• Additional Research
Objective

- To adapt laboratory mixture design and analysis procedures to WMA
 - Compatible with HMA procedures
 - Address wide range of warm mix processes
 - Current
 - Future
Approach

Preliminary Procedure
- Focus

Phase I Experiments
- Reheating
- Binder Grade
- RAP
- Short-Term Conditioning
- Workability

Revised Procedure

Phase II Experiments
- Expanded RAP Mixing
- Laboratory Mix Design
- Field Validation
- Limited Fatigue

Final Procedure
- Draft Appendix to AASHTO R35
Major Conclusion 1

• WMA can be designed with only minor changes to AASHTO R35
 - Specimen fabrication procedures
 - Coating and compactability in lieu of viscosity based mixing and compaction temperatures
 - WMA design is challenging for plant foaming process
Major Conclusion 2

• For mixtures using the same aggregates and binders and having binder absorption equal to or less than 1 percent
 – Volumetric properties of WMA and HMA are very similar
 • Supports current practice
 – Compactability, moisture sensitivity, and rutting resistance may be different when designed as WMA compared to HMA
 • Supports need for design procedure
Major Conclusion 3

- Fatigue properties of HMA and WMA are very similar
NCHRP 9-43 Products

• NCHRP Report 691
 – http://www.trb.org/Main/Blurbs/165013.aspx

• Recommended Draft Appendix to AASHTO R35, *Special Mixture Design Considerations and Methods for Warm Mix Asphalt (WMA)*

• Commentary to the Draft Appendix

• Training Materials for the Draft Appendix
 – NHI Web-Course ~ Oct/Nov 2011
1. Equipment for Designing WMA
2. WMA Process Selection
3. Binder Grade Selection
4. RAP in WMA
5. Process Specific Specimen Fabrication Procedures
6. Evaluations
 • Coating
 • Compactability
 • Moisture Sensitivity
 • Rutting Resistance
7. Adjusting the Mixture to Meet Specification Requirements.
Additional Equipment

Mechanical Mixer

Low Shear Mixer

Laboratory Foaming
WMA Process Selection

• WMA mix design requires the producer to select
 – WMA process
 – Planned production temperature
 – Planned compaction temperature

• Laboratory specimen fabrication

• Producer should consider
 – Past performance and technical support
 – Cost
 – Useful temperature range
 – Production rates
 – Modifications
Binder Grade Selection

- Use same grade as HMA
RAP

- RAP Does Mix at WMA Temperatures

![Graph showing the measured to Hirsch estimated fully blended dynamic modulus at 68°F, 1.0 Hz versus short-term conditioning time for different asphalt mixtures. The graph includes data points for HMA 280/255, HMA 248/230, WMA 248/230, WMA 230/212, and no RAP.]
RAP in WMA

- High temperature grade of RAP \leq planned compaction temperature
WMA Design Categories

Additive Added to the Binder

Additive Added to the Mixture

Wet Aggregate Mixtures

Foamed Asphalt Mixtures
Specimen Fabrication

• Short-Term Conditioning
 – 2 hours at Planned Compaction Temperature

• Compactive Effort and Volumetric Criteria
 – Same as HMA
Coating

• Evaluate coating per AASHTO T195
 - Separate coarse aggregates
 • 9.5 mm sieve for NMAS 12.5 mm and larger
 • 4.75 mm sieve for NMAS 9.5 and smaller
 • Min 200 particles
 - \[\text{% Coated Particles} = \left(\frac{\text{# of Fully Coated Particles}}{\text{Total # of Particles}} \right) \times 100\% \]
 • \(\geq 95 \) percent
Compactability

- Compact 2 specimens to N_{design} at the planned compaction temperature
 - Compute gyrations to 92 % of Gmm
- Compact 2 specimens to N_{design} at 30 °C below the planned compaction temperature
 - Compute gyrations to 92 % of Gmm

$$\text{Ratio} = \frac{(N_{92})_{T-30}}{(N_{92})_T} \leq 1.25$$
Moisture Sensitivity and Rutting Resistance

• **AASHTO T283**
 - Tensile strength ratio >= 0.80 with no visual stripping

• **Rutting resistance**
 - Flow number, **AASHTO T79**

<table>
<thead>
<tr>
<th>Traffic Level, Million ESALs</th>
<th>Minimum Flow Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><3</td>
<td>NA</td>
</tr>
<tr>
<td>3 to < 10</td>
<td>30</td>
</tr>
<tr>
<td>10 to < 30</td>
<td>105</td>
</tr>
<tr>
<td>≥ 30</td>
<td>415</td>
</tr>
</tbody>
</table>
Adjusting the Mixture to Meet Specifications

- Coating
- Compactability
- Moisture Sensitivity
- Rutting Resistance
 - Change binder grade
 - Add RAP
 - Increase filler content
 - Decrease VMA
 - Increase N_{design}

Consult WMA Technology Supplier
Comparison of HMA and WMA Properties

<table>
<thead>
<tr>
<th>No.</th>
<th>Mixture Identification</th>
<th>Process</th>
<th>HMA</th>
<th>WMA A</th>
<th>WMA B</th>
<th>WMA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N\textsubscript{design}</td>
<td>Aggregate Absorption</td>
<td>RAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>High</td>
<td>Yes</td>
<td>320/310</td>
<td>270/260</td>
<td>225/215</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Low</td>
<td>No</td>
<td>320/310</td>
<td>225/215</td>
<td>270/260</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>Low</td>
<td>Yes</td>
<td>320/310</td>
<td>270/260</td>
<td>270/260</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>High</td>
<td>No</td>
<td>320/310</td>
<td>225/215</td>
<td>225/215</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>High</td>
<td>Yes</td>
<td>320/310</td>
<td>225/215</td>
<td>270/260</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>Low</td>
<td>No</td>
<td>320/310</td>
<td>270/260</td>
<td>225/215</td>
</tr>
</tbody>
</table>

Paired t-test WMA-HMA
Design Binder Content

Binder Absorption 0.5 to 1.0 %

Average Difference in Design Binder Content, wt. %

WMA Process A WMA Process B WMA Process C
Binder Absorption

WMA Process A WMA Process B WMA Process C

Average Difference in Binder Absorption, wt %

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10
Compactability

WMA Process A
WMA Process B
WMA Process C

Average Difference in Gyration Ratio, %

Without RAP
25 Percent RAP
Moisture Sensitivity

WMA Process A WMA Process B WMA Process C

Average Difference in Tensile Strength Ratio, %
On-Going WMA Research

• NCHRP 9-47A, *Properties and Performance of Warm Mix Asphalt Technologies*

• NCHRP 9-49, *Performance of WMA Technologies: Stage I -- Moisture Susceptibility*

• NCHRP 9-49A, *Performance of WMA Technologies: Stage II -- Long-Term Field Performance*
Questions

Ramon Bonaquist
Advanced Asphalt Technologies, LLC
108 Powers Court, Suite 100
Sterling, VA 20166
703-444-4200
aatt@erols.com