Using Warm Mix Technology to Improve Application of Asphalt Rubber in California

October 11, 2011

By DingXin Cheng, Ph.D., P.E.
R. Gary Hicks, Ph.D., P.E.
and Lerose Lane, P.E.

CP2 Center, California State University, Chico
What is “RWMA”?

- Warm mix asphalt (WMA) is used to describe technologies that reduce the production and placement temperatures of asphalt mixes.
- Asphalt rubber generally requires higher production and placement temp’s.
 - RWMA (Both Gap Graded and Open Graded)
 - Asphalt rubber spray applications (i.e., seal coats)
Who is using RWMA in California?

- California
 - Caltrans (California DOT)
 - I-5 Projects—at least 5 major projects
 - SR 1, SR 99, SR 70, SR 101, SR 152, CA-94 and more
 - Local agencies
 - City of Stockton
 - City of Roseville
 - LA County
 - City of Fort Bragg
 - Others
Advantages Observed Using Warm Mix

- Reduced Fuel Usage
- Reduced Emissions
 - Production at the plant
 - Placement in the job site
- Improved Worker Conditions with Lower Emissions
- Improved Compaction in the Mat with Cooler Temperatures
 - Enables improved quality night time paving
 - Allows longer haul distances
- Provides a Longer Construction Season
- Saves Contractor Equipment Costs
Types of Warm Mix Technologies

- Organic Additive or Wax
- Chemical Additive or Surfactant
- Water for Foaming
- Website for Current Information
 - www.warmmixasphalt.com
 - Supplier’s Own Websites Per Product

More than 20 products currently available
WMA Technologies Used in California

- Rediset used by City of Stockton for PG76-22 terminal blend overlay project
- Engineered Additive WRM used by City of Roseville for AR chip seal project
- Astech PER from Engineered Additive used by Caltrans, District 6 for AR chip seal project
- Sasobit used by City of Stockton for PG76-22 terminal blend overlay project
- Evoterm-Used on some Caltrans projects
- Advera-Used on some Caltrans projects
Typical WMA Production and Paving Temperatures

<table>
<thead>
<tr>
<th>WMA ADDITIVES</th>
<th>Production Temp (°F/°C)</th>
<th>Paving Temp (°F/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Barrel Green</td>
<td>250-275 / 121-135</td>
<td>~235 / 113</td>
</tr>
<tr>
<td>Evotherm™</td>
<td>180-250 / 82-121</td>
<td>160-240 / 71-116</td>
</tr>
<tr>
<td>Rediset WMX</td>
<td>~265 / ~129</td>
<td>~225 / 107</td>
</tr>
<tr>
<td>REVIX</td>
<td>245-265 / 118-129</td>
<td>205-225 / 96-107</td>
</tr>
<tr>
<td>Sasobit</td>
<td>200-280 / 93-138</td>
<td>150-250 / 66-121</td>
</tr>
<tr>
<td>WAM Foam</td>
<td>212-248 / 100-120</td>
<td>176-230 / 80-110</td>
</tr>
<tr>
<td>Zeolite</td>
<td>~275 / ~135</td>
<td>>212 / >100</td>
</tr>
<tr>
<td>RHMA</td>
<td>325-375 / 163-191</td>
<td>285-350 / 141 - 177</td>
</tr>
</tbody>
</table>
Asphalt Rubber (AR) Usage

- Asphalt Rubber—used since mid 1960’s
 - Use pioneered by City of Phoenix, Arizona
 - Arizona DOT fully implemented AR program 1988
 - Arizona has used 4.2 million tons of AR
 - Arizona has recycled 15 million used tires

- California—used AR since 1980’s
 - 30% of HMA placed includes AR
 - AR more difficult to place than non-rubberized mix
 - AR requires higher mixing temperatures to achieve workability
 - Higher mixing temperatures result in increased emissions
Asphalt Rubber (AR) Warm Mix

- Benefits of Warm Mix in AR
 - Production and placement temperature reduction
 - Improved workability
 - Lower emissions
 - Energy Savings = Cost Savings
 - Increased production

- AR Temperature Range with Warm Mix
 - Mixing -280-300 °F
 - Compaction-250-275 °F
Additional Benefits of AR with Warm Mix

- Reduced Fatigue Cracking
 - Clemson University Study (2008) determined that warm mix improved “the rheological properties of both the un-aged and aged binders”. Fatigue life is greater for AR with warm mix
 - Determined warm mix additives offset the increase of production and compaction temperatures induced by the addition of rubber
Selected AR with Warm Mix Technologies Constructed in California

<table>
<thead>
<tr>
<th>Road Name</th>
<th>Location (PM: n/n)</th>
<th>Date Constructed</th>
<th>Warm Mix Additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Clara Rte. 152</td>
<td>Santa Clara</td>
<td>March 2006</td>
<td>Sasobit</td>
</tr>
<tr>
<td>Interstate 5</td>
<td>Santa Nella (105.9/106.4)</td>
<td>September 2008</td>
<td>Astec DBG & Evotherm</td>
</tr>
<tr>
<td>Interstate 5</td>
<td>Orland</td>
<td>May 2009</td>
<td>Evotherm</td>
</tr>
<tr>
<td>Interstate 5</td>
<td>Near Firebaugh, Fresno Co. (PM 37.2 to PM 45.0)</td>
<td>September 2010</td>
<td>Astech PER & Engineered Additives WMA</td>
</tr>
<tr>
<td>CA-94</td>
<td>San Diego</td>
<td>June 2009</td>
<td>Advera, Evotherm, Sasobit</td>
</tr>
<tr>
<td>SH 70</td>
<td>Marysville</td>
<td>July 2009</td>
<td>Evotherm</td>
</tr>
<tr>
<td>SR-101</td>
<td>Fortuna (54.2/56.3)</td>
<td>September 2009</td>
<td>Evotherm</td>
</tr>
<tr>
<td>SH 99</td>
<td>Sutter County</td>
<td>November 2009</td>
<td>Evotherm</td>
</tr>
<tr>
<td>Various</td>
<td>City of Roseville</td>
<td>September-October 2010</td>
<td>Engineered Additives WMA</td>
</tr>
</tbody>
</table>
Locations of Selected California RWMA Projects (2011)
Current Projects in CP² Center Database (Mostly Asphalt Rubber Warm Mix)
Santa Clara SR 152 Project (2006-2010)

- 1.75” Overlay on shoulder, using 200 tons of RHMA-G with Sasobit.
- Mix produced at 280 °F, a drop of 40 degrees from the normal production temperature of 320 °F.
Near Orland, I-5--Caltrans District 3 (2009)

- Project Description
 - Remove OGFC
 - Replace with 1.2” RHMA-O
 - 18,000 Tons placed with Evotherm
 - Temperature started at 320 °F and dropped to 300 °F
 - Temperature dropped again to 290 °F
 - Temperature dropped again to 285 °F
Near Orland, I-5--Caltrans District 3 (Continued) (2009)

- Base binder was PG 64-16 with 18.5% crumb rubber
 - Estimated 168 tons of scrap tire used
 - Caltrans specifies a blend of scrap tire rubber and high natural rubber
 - This project used rubber blend of 75% scrap tire rubber and 25% high natural rubber
Near Orland, I-5--Caltrans District 3 (Continued) (2009-2010)

- Project is still performing well in 2011
- It’s expected to last as long as a non-warm mix project.

2009 Construction

2010
Near Firebaugh, I-5—Caltrans District 6
Asphalt Rubber Spray Application(2010)

• Project Description
 • Constructed as part of a RHMA-G overlay with a chip seal application on the shoulders
 • Agreed between Contractor and Caltrans to place a trial section of warm mix asphalt rubber seal coat on the northbound median shoulder
 • Location—I-5, Fresno County, PM 37.2 to PM 45.0

- **Mix Design**
 - PG 64-16 base binder with 18% rubber
 - Warm mix additives
 - Engineered additives WMA at 1.5%
 - Astech PER at 0.5%

- **Application Rates**
 - Binder applied at 0.6 gal/sq yd
 - 3/8” hot pre-coated chips applied at 30 lbs/sq yd

- Thermal Picture of Hot Chip Application, Temperature of binder on grade 302 °F.
- Binder temp. in distribution truck--340 °F.

- 3/8 inch Chip Seal Mat (hot pre-coated chips) rolled after application.
- Rolling can occur up to 15 min. after application with warm mix

Completed Project after 5 months

- Why use a chip seal on shoulder application?
- Can serve in place of a rumble strip
- Preserves shoulder at a lesser cost than an overlay
Conclusions

- Warm Mix (WM) can be used with AR for night time paving and in cooler climates
- WM increases workability of AR mixes
- WM can reduce fuel usage by reducing production temperature by 30-80 °F
- WM can reduce emissions up to 80% at production and during paving
- WM in California appear to be performing well
- WM AR chip seals can offer agencies a maintenance treatment for cracked and aged pavements at a lesser cost than a 1 inch overlay
- WM can reduce energy costs
- WM can allow a longer construction season in adverse climates
Recommendations

- More agencies should consider WM with AR for cooler temperature such as night time
- More trials should be done using AR with spray applications
- California’s use of both products is increasing
Acknowledgements

- Financial support from CalRecycle
 - Nate Gauff
 - Bob Fujii
- Caltrans personnel
 - Joe Peterson
 - Cathrina Barros
 - Michael Stapleton
 - Al Ochoa
 - Kee Foo
- References for this presentation are available in our paper
The End

- Questions?