A Comparative Study of Three WMA Technologies in the City of Calgary

R.W. Forfylow, P.Eng
Director of Quality – Asphalt, Paving & Construction
Mauricio Reyes, Ph.D.
Manufacturing Coordinator - Asphalt, Paving & Construction
Acknowledgements

The authors express their gratitude to:

- The City of Calgary
- University of Calgary
- GECAN laboratories
- Lafarge GCA Asphalt Manufacturing and Construction Divisions
- Lafarge Center of Research, Lyon – France

for their support and contribution in preparation of this paper.
Project Description

At the Plant Production
- Quality / Volumetrics - AC/Gradation, AV, VMA, Moisture
- Aggregate / AC / Mix temperature
- Water concentration
- Emissions
- Baghouse temperatures

At the Construction Site
- Temperature behind paver
- Cooling rate profile
- Thermal segregation
- Compaction profile - densities
- Texture - Visual inspection
- Cores – Stiffness, future evaluations

At the Laboratory
- Moisture susceptibility - TSR
- Rutting resistance – APA, Flow number
- Fatigue – Fatigue tests at different strain
- Low temperature – TSRST tests
- Complex Modulus
- Binder evaluation – Extracted & original
What is WMA?

- Allows a reduction in the temperatures at which asphalt mixes are produced and placed

- Reduced viscosity at lower temps
 - Complete aggregate coating

- Chemical package or binder treatment to promote coating of the aggregate
Warm Mix Asphalt (WMA)

- Hot Mix Asphalt 275-325°F (135-160°C)
- Warm Mix Asphalt 250-275°F (120-135°C)
Warm Mix Asphalt (WMA) Technologies

Technologies

- WMA additives that are added to the asphalt binder
- WMA additives that are added to the mixture during production
- Sequential mixing processes
- Plant foaming processes
ASTEC
Double Barrel® Green

GENCOR
Ultrafoam GX™

HyperTherm
Additive
Project Location
Project Location

GENCOR Foam
ASTEC DBG Foam
GENCOR HyperTherm
GENCOR Conventional
Mix Design
Plant Production
Plant Production

<table>
<thead>
<tr>
<th></th>
<th>GENCOR Foaming</th>
<th>ASTEC DBG Foaming</th>
<th>GENCOR HyperTherm</th>
<th>GENCOR Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Date</td>
<td>Aug 31/2009</td>
<td>Sep 01/2009</td>
<td>Sep 02/2009</td>
<td>Sep 03/2009</td>
</tr>
<tr>
<td>Aggregate Temperature, °C</td>
<td>-</td>
<td>158</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Asphalt Cement Temperature, °C</td>
<td>137</td>
<td>151</td>
<td>138</td>
<td>135</td>
</tr>
<tr>
<td>Asphalt Mix Temperature, °C</td>
<td>120</td>
<td>127</td>
<td>124</td>
<td>150</td>
</tr>
<tr>
<td>Water Concentration, % by weight of AC</td>
<td>2.0</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bag house inlet temperature, °C</td>
<td>104</td>
<td>89</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>Bag house outlet temperature, °C</td>
<td>77</td>
<td>72</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>Plant Production, tonnes/hour</td>
<td>171</td>
<td>225</td>
<td>177</td>
<td>176</td>
</tr>
</tbody>
</table>
Plant Produced Mix Properties

<table>
<thead>
<tr>
<th>Sieve Sizes (mm)</th>
<th>Mix Design</th>
<th>GENCOR Foam</th>
<th>ASTEC Foam</th>
<th>GENCOR HyperTherm</th>
<th>GENCOR Conventional</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100 – 100</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100 – 100</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>99.6</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>97 – 100</td>
</tr>
<tr>
<td>12.5</td>
<td>98</td>
<td>95.3</td>
<td>96.5</td>
<td>95.2</td>
<td>97.4</td>
<td>95 – 100</td>
</tr>
<tr>
<td>9.5</td>
<td>91</td>
<td>88.2</td>
<td>89.8</td>
<td>88.2</td>
<td>91.0</td>
<td>88 – 94</td>
</tr>
<tr>
<td>4.75</td>
<td>62</td>
<td>65.6</td>
<td>64.1</td>
<td>62.8</td>
<td>62.1</td>
<td>59 – 65</td>
</tr>
<tr>
<td>2.36</td>
<td>50</td>
<td>50.7</td>
<td>50.2</td>
<td>48.3</td>
<td>47.9</td>
<td>47 – 53</td>
</tr>
<tr>
<td>1.18</td>
<td>42</td>
<td>41.0</td>
<td>42.0</td>
<td>39.2</td>
<td>39.6</td>
<td>39 – 45</td>
</tr>
<tr>
<td>0.6</td>
<td>33</td>
<td>32.9</td>
<td>34.6</td>
<td>31.6</td>
<td>32.4</td>
<td>30 – 36</td>
</tr>
<tr>
<td>0.3</td>
<td>16</td>
<td>17.1</td>
<td>18.1</td>
<td>16.4</td>
<td>17.4</td>
<td>13 – 19</td>
</tr>
<tr>
<td>0.15</td>
<td>7.5</td>
<td>7.9</td>
<td>8.5</td>
<td>7.7</td>
<td>7.7</td>
<td>4.5 – 10.5</td>
</tr>
<tr>
<td>0.075</td>
<td>5.4</td>
<td>5.6</td>
<td>5.1</td>
<td>5.5</td>
<td>5.2</td>
<td>4.0 – 6.4</td>
</tr>
<tr>
<td>AC Content (%)</td>
<td>6.0</td>
<td>5.90</td>
<td>6.03</td>
<td>5.91</td>
<td>6.00</td>
<td>6.0 min.</td>
</tr>
<tr>
<td>Air Voids (%)</td>
<td>3.9</td>
<td>3.8</td>
<td>3.9</td>
<td>3.7</td>
<td>3.7</td>
<td>3.0 – 5.0</td>
</tr>
<tr>
<td>Mix Moisture</td>
<td>-</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>VMA</td>
<td>16.0</td>
<td>16.1</td>
<td>15.9</td>
<td>16.0</td>
<td>16.0</td>
<td>14.0 min</td>
</tr>
<tr>
<td>VFA</td>
<td>75.7</td>
<td>77.0</td>
<td>77.6</td>
<td>77.1</td>
<td>77.1</td>
<td>-</td>
</tr>
</tbody>
</table>
Temperature Discharge Silo

Temperature Silos (°C)

- GENCOR Foam
- ASTEC Foam
- GENCOR Hypotherm
- GENCOR Conventional
Temperature Behind Paver

- Temperature Behind Paver (°C)

- GENCOR Foam
- ASTEC Foam
- GENCOR HyperTherm
- GENCOR Conventional
Moisture Susceptibility

<table>
<thead>
<tr>
<th></th>
<th>Dry</th>
<th>60°C Soak</th>
<th>Freez / Thaw</th>
<th>TSR (60°C)</th>
<th>TSR (Freez / Thaw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENCOR Conventional</td>
<td>482.5</td>
<td>399.6</td>
<td>433.7</td>
<td>82.8</td>
<td>89.9</td>
</tr>
<tr>
<td>GENCOR Foam</td>
<td>416.8</td>
<td>337.5</td>
<td>408.2</td>
<td>81.0</td>
<td>97.9</td>
</tr>
<tr>
<td>GENCOR HyperTherm</td>
<td>385.5</td>
<td>397.8</td>
<td>410.2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ASTEC Foam</td>
<td>468.6</td>
<td>411.5</td>
<td>447.1</td>
<td>87.8</td>
<td>95.4</td>
</tr>
</tbody>
</table>

* 0.3% liquid antistrip added to all mixes

Mix Moisture (%) During Mix Manufacturing

<table>
<thead>
<tr>
<th></th>
<th>GENCOR Conventional</th>
<th>GENCOR HyperTherm</th>
<th>ASTEC Foam</th>
<th>GENCOR Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Moisture</td>
<td>0.10</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Plant Emissions

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>GENCOR . Foaming</th>
<th>ASTEC DBG Foaming*</th>
<th>GENCOR HyperTherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>14.85%</td>
<td>10.4%</td>
<td>13.53%</td>
</tr>
<tr>
<td>Nitrogen Oxides (NOₓ)</td>
<td>5.9%</td>
<td>8.3%</td>
<td>5.8%</td>
</tr>
<tr>
<td>SO2 (mg/m3)</td>
<td>0.0%</td>
<td>- 14.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>10.0%</td>
<td>10.9%</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

“Lower Plant & Construction Emissions”.
Plant Emissions - Silo

- GENCOR HyperTherm
- ASTEC DBG Foam
- GENCOR Foam
- GENCOR Conventional
Construction Site
Temperature Cooling Rate

- GENCOR Foam
- ASTEC DBG Foam
- GENCOR HyperTherm
- GENCOR Conventional
Thermal Segregation

Mix Thermal Segregation, °C.
Thermal Segregation

- Standard deviation
 - GENCOR Conventional
 - GENCOR Foam
 - ASTEC DBG Foam
 - GENCOR HyperTherm

- Maximum Difference (°C)
 - GENCOR Conventional
 - GENCOR Foam
 - ASTEC DBG Foam
 - GENCOR HyperTherm
Road Compaction Profile

- GENCOR Foam
- ASTEC DBG Foam
- GENCOR HyperTherm
- GENCOR Conventional

1 Pass Vibratory Steel Roller
2 Pass Vibratory Steel Roller
Behind Paver
Final Neumatic Tire Roller

Images of road rollers and pavers.
Plant Emissions - Paving

GENCOR Foam

ASTEC DBG Foam

GENCOR HyperTherm

GENCOR Conventional
Texture

- Tight surface
- Few aggregates uncoated identified for future evaluation
Laboratory Testing
Mix Workability
Mix Workability

![Mix Workability Graph]

- GENCORE Foam
- ASTEC DBG Foam
- GENCOR HyperTherm
- GENCOR Conventional

Mix Temperature (°C)

Maximum Load (kN)
Mix High Temperature Evaluation

Asphalt Pavement Analyzer Test (APA)

Temp: 58°C, 8,000 Cycles, 7.0 ± 0.5% AV

Flow Number Test

Stress: 600KPa, Loading Time: 0.1s, Unloading Time: 0.9s, Temp: 45°C
Mix High Temperature Evaluation

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>APA (8.0mm Max)</th>
<th>Flow Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rut depth (mm)</td>
<td>Number of cycles</td>
</tr>
<tr>
<td>GENCOR conventional</td>
<td>6.041</td>
<td>55</td>
</tr>
<tr>
<td>GENCOR Foam</td>
<td>5.584</td>
<td>78</td>
</tr>
<tr>
<td>GENCOR HyperTherm</td>
<td>5.641</td>
<td>116</td>
</tr>
<tr>
<td>ASTEC Foam</td>
<td>6.167</td>
<td>54</td>
</tr>
</tbody>
</table>

“Similar Rutting Resistance as HMA”
Mix Fatigue Cracking

Tension compression tests on cylindrical specimens

Temperature of 10°C
Frequency of 10Hz
Strain Controlled Test
Mix Fatigue Cracking

\[y = 7E+16 \times x^{-5.1397} \]
\[R^2 = 0.9592 \]

\[y = 2E+16 \times x^{-4.8941} \]
\[R^2 = 0.9484 \]

\[y = 1E+16 \times x^{-4.8576} \]
\[R^2 = 0.9955 \]

\[y = 1E+15 \times x^{-4.31} \]
\[R^2 = 1 \]

1.E+04 1.E+05 1.E+06 1.E+07
90 140 190

Deformation (microstrains)

Nf (cycles) at 50% of initial stiffness

- Astec Foam
- Gencor Conventional
- Gencor HyperTherm
- Gencor Foam
Mix Low Temperature Cracking

Thermal Stress Restrained Specimen Test (TSRST)

Temperature (°C) drops at constant rate of 10° C/hour. Starting temperature = 5° C

Plates glued to the tested Sample and maintained At fixed position
Mix Low Temperature Cracking

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>Critical Low Temperature Cracking (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENCOR conventional</td>
<td>-33.20</td>
</tr>
<tr>
<td>GENCOR Foam</td>
<td>-35.6</td>
</tr>
<tr>
<td>GENCOR HyperTherm</td>
<td>-34.53</td>
</tr>
<tr>
<td>ASTEC Foam</td>
<td>-33.59</td>
</tr>
</tbody>
</table>

“Slightly Better Low Temperature Performance”
Mix Stiffness

Complex Modulus tests on cylindrical specimens
Mix Stiffness

“Slightly Lower Initial Stiffness”
Rheology of Recovered Binders

Dynamic Shear Rheometer

Bending Beam Rheometer
Recovered Binder

<table>
<thead>
<tr>
<th>Tests on Recovered Asphalt Binder</th>
<th>Binders extracted from core samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150/200 Binder Virgin - RTFOT</td>
</tr>
<tr>
<td>Dynamic Shear Rheometer</td>
<td></td>
</tr>
<tr>
<td>G*/Sin δ, KPa</td>
<td>@ 46 °C 8.770</td>
</tr>
<tr>
<td></td>
<td>>=2.2 KPa 3.818</td>
</tr>
<tr>
<td></td>
<td>@ 52 °C 1.723</td>
</tr>
<tr>
<td></td>
<td>@ 64 °C -</td>
</tr>
<tr>
<td>Predicted Failure Temperature (° C)</td>
<td>56.16</td>
</tr>
<tr>
<td>Pressure Aging Vessel Residue (AASHTO R28)</td>
<td></td>
</tr>
<tr>
<td>Bending Beam Rheometer</td>
<td></td>
</tr>
<tr>
<td>Creep Stiffness, MPa</td>
<td>@ -18 °C 121</td>
</tr>
<tr>
<td></td>
<td>@ -24 °C 276</td>
</tr>
<tr>
<td></td>
<td>@ -30 °C 586</td>
</tr>
<tr>
<td>Predicted Failure Temperature (° C)</td>
<td>-34.61</td>
</tr>
<tr>
<td>Slope, m - value, MPa</td>
<td>@ -18 °C 0.386</td>
</tr>
<tr>
<td></td>
<td>>=0.300 0.325</td>
</tr>
<tr>
<td></td>
<td>@ -30 °C 0.252</td>
</tr>
<tr>
<td>Predicted Failure Temperature (° C)</td>
<td>-36.46</td>
</tr>
<tr>
<td>Performance Grade (PG)</td>
<td>52-34</td>
</tr>
</tbody>
</table>

“Same PG graded” “Slightly Lower Initial Stiffness”
Follow-up Work

Stiffness evolution with age (FWD, Modulus, Coring)
Binder rheology
Pavement condition survey
Thank You!