Combining WMA Technologies with Mixtures Containing RAP

J. Richard Willis, Randy C. West, Jason Nelson, Adam Taylor, & Kristoffer Leatherman

National Center for Asphalt Technology
Presentation Overview

- Background
- Objectives and Scope
- Test Results
 - Binder Characterization
 - Mixture Stiffness
 - Moisture Damage
 - Rutting
 - Cracking
- Conclusions
Background

- Synergistic advantages of combining RAP and WMA
 - Combined environmental benefits
 - Cost savings
 - Cancelling affect of negative aspects of WMA and RAP
 - Increased potential of rutting with WMA
 - Incomplete aggregate drying in WMA
 - Requiring softer binder grade for high RAP
Objective

- Characterize how incorporating WMA technologies in RAP mixtures affects binder and mixture performance properties
Scope

- 4 field projects (Southeast and Midwest US)
 - 4 HMA-RAP mixtures
 - 6 WMA-RAP mixtures
- NCAT Pavement Test Track
 - 2 HMA-RAP mixtures
 - 2 WMA-RAP Mixtures
- Laboratory characterization
 - Binder grade, mixture stiffness, rutting, cracking, and moisture damage resistance
<table>
<thead>
<tr>
<th>Location</th>
<th>WMA Technology</th>
<th>RAP %</th>
<th>NMAS mm</th>
<th>AC %</th>
<th>V_a %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytona, FL</td>
<td>None</td>
<td>45</td>
<td>12.5</td>
<td>5.4</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Astec DBG</td>
<td>45</td>
<td>12.5</td>
<td>6.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Orlando, FL</td>
<td>None</td>
<td>30</td>
<td>12.5</td>
<td>5.1</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Gencor</td>
<td>30</td>
<td>12.5</td>
<td>5.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Macon, GA</td>
<td>None</td>
<td>15</td>
<td>9.5</td>
<td>5.7</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Evotherm 3G</td>
<td>15</td>
<td>9.5</td>
<td>5.6</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Rediset</td>
<td>15</td>
<td>9.5</td>
<td>6.0</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Cecabase</td>
<td>15</td>
<td>9.5</td>
<td>5.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Royal, NE</td>
<td>None</td>
<td>10</td>
<td>9.5</td>
<td>4.5</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Evotherm DAT</td>
<td>10</td>
<td>9.5</td>
<td>4.6</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Advera</td>
<td>10</td>
<td>9.5</td>
<td>4.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Test Track</td>
<td>None</td>
<td>50</td>
<td>9.5</td>
<td>6.0</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Astec DBG</td>
<td>50</td>
<td>9.5</td>
<td>6.1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>50</td>
<td>19.0</td>
<td>4.7</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Evotherm DAT</td>
<td>50</td>
<td>19.0</td>
<td>4.6</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Binder Characterization
Binder Characterization

- Mixtures from Test Track, Daytona, FL and Macon, GA
- Binder extracted using TCE
- Binder recovered with rotary evaporator
- Performance grades of binders using AASHTO R 29
Binder Performance Grades

<table>
<thead>
<tr>
<th>Location</th>
<th>WMA</th>
<th>True Grade</th>
<th>Performance Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytona, FL</td>
<td>None</td>
<td>75.5 – 22.6</td>
<td>70-22</td>
</tr>
<tr>
<td></td>
<td>Astec DBG</td>
<td>71.8 – 24.0</td>
<td>70-22</td>
</tr>
<tr>
<td>Macon, GA</td>
<td>None</td>
<td>75.3 – 24.5</td>
<td>70-22</td>
</tr>
<tr>
<td></td>
<td>Evotherm 3G</td>
<td>74.9 – 23.9</td>
<td>70-22</td>
</tr>
<tr>
<td></td>
<td>Rediset</td>
<td>75.4 – 24.5</td>
<td>70-22</td>
</tr>
<tr>
<td></td>
<td>Cecabase</td>
<td>77.9 – 27.8</td>
<td>76-22</td>
</tr>
<tr>
<td>Test Track – Surface Mix</td>
<td>None</td>
<td>87.8 – 15.4</td>
<td>82-10</td>
</tr>
<tr>
<td></td>
<td>Astec DBG</td>
<td>83.8 – 17.7</td>
<td>82-16</td>
</tr>
<tr>
<td>Test Track – Base Mix</td>
<td>None</td>
<td>95.0 – 12.8</td>
<td>94-10</td>
</tr>
<tr>
<td></td>
<td>Astec DBG</td>
<td>88.7 – 14.1</td>
<td>88-10</td>
</tr>
</tbody>
</table>
Mixture Stiffness
E* Testing Methodology

- AASHTO TP 62-07
- Temperatures
 - 4.4, 21.1, 37.8, and 54.4 °C
- Frequencies
 - 25, 10, 5, 1, 0.5, 0.1 Hz
- Confinement: Varied
- Target Strain: 100με
Daytona, FL

Confinement = 20 psi

Daytona - HMA

Daytona - DBG

Log Frequency (Hz)

E (ksi)
Confinement = 20 psi

Macon, GA

E (ksi)

Log Frequency (Hz)

Macon - HMA
Macon - 3G
Macon - Rediset
Macon - Cecabase
Unconfined Test Results

- Royal - HMA
- Royal - DAT
- Royal - Advera

E (ksi) vs Log Frequency (Hz)
Orlando, FL

Unconfined Test Results

Log Frequency (Hz)

E (ksi)

Orlando - Gencor
Orlando - HMA
NCAT Test Track

Unconfined Test Results

Reduced Frequency (Hz)

E* (ksi)

9.5 mm HMA-RAP
9.5 mm WMA-RAP
19.0 mm HMA-RAP
19.0 mm WMA-RAP

Unconfined Test Results

NCAT Test Track
Moisture Susceptibility
AASHTO T283

- All mixtures tested
- Plant-produced field-compacted mix
- Air voids: 7 ± 0.5%
- 1 freeze-thaw cycle
- Minimum TSR: 0.80
Test Results

- WMA-RAP mixtures had lower tensile strengths than HMA-RAP
 - Conditioned: Paired t-test ($\alpha = 0.05, p = 0.006$)
 - Unconditioned: Paired t-test ($\alpha = 0.05, p = 0.04$)
- Three WMA-RAP mixtures fail TSR
 - All were foaming technology
- No statistical difference between HMA-RAP and WMA-RAP TSR values
 - Paired t-test ($\alpha = 0.05, p = 0.14$)
Hamburg

- Plant-produced, field-compacted
- AASHTO T324
- Temperature: 50°C
- Air voids: 7 ± 1%
- Load: 158 ± 1 lbs
- Stripping inflection point > 5000 cycles
 - TX, CO, and UT
 - IL more stringent when using stiffer binders
Test Results

- Eleven mixtures were tested
 - 4 mixtures did not meet the minimum stripping inflection point
 - All 3 mixtures from Royal, NE
 - Cecabase from Macon, GA
- No statistical difference between HMA and WMA
 - Paired t-test ($\alpha = 0.05$, $p = 0.21$)
Moisture Damage Summary

- WMA mixtures were generally less resistant to moisture damage than control HMA mixtures
- TSR and Hamburg results are contradictory

<table>
<thead>
<tr>
<th>Mixture</th>
<th>TSR Results</th>
<th>Hamburg Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orlando Gencor</td>
<td>Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>Macon Cecabase</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Royal Evotherm DAT</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Royal Advera</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Test Track Surface DBG</td>
<td>Fail</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Rutting Susceptibility
Asphalt Pavement Analyzer

- AASHTO TP 63-07
- Temperature: 64°C
- Load: 100 lbs
- Pressure: 100 psi
- Average rut depth @ 8000 cycles
- Criterion:
 - Rut depth < 5.5 mm
Test Results

- No statistical differences between HMA-RAP and WMA-RAP rut depths
 - Paired t-test ($\alpha = 0.05, p = 0.13$)
- Four mixtures do not pass criterion
 - Daytona: Astec DBG
 - Orlando: Control and Gencor
 - Test Track: Astec DBG
- 5/8 of WMA mixtures passed criterion
Hamburg

- Plant-produced, field-compacted
- AASHTO T324
- Temperature: 50°C
- Air voids: 7 ± 1%
- Load: 158 ± 1 lbs
- Rut Depth @ 20,000 passes < 10 mm
 - CO, TX, UT
 - IL < 12.5 mm
Test Results

• No statistical difference between rut depths of WMA and control mixtures
 • Paired t-test ($\alpha = 0.05, \ p = 0.30$)
• 4/7 of WMA mixtures did not pass Hamburg requirement
 • Orlando Gencor, Macon Rediset, and Test Track DBG surface passed
Rutting Summary

- APA and HWTD test results contradict each other

<table>
<thead>
<tr>
<th>Mixture</th>
<th>APA Results</th>
<th>Hamburg Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orlando HMA</td>
<td>Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>Orlando Gencor</td>
<td>Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>Macon 3G</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Macon Cecabase</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Royal Evotherm DAT</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Royal Advera</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Test Track DBG*</td>
<td>Fail</td>
<td>Pass</td>
</tr>
</tbody>
</table>

*Known performance
Cracking
Bending Beam Fatigue Testing

- AASHTO T321
- Air voids: 7 ± 1.0%
- Temperature: 20 °C
- Frequency: 10 Hz
- 3-6 beams tested
 - Strain range: 200 – 800 με
- Failure: 50% stiffness reduction

Beam Fatigue Apparatus
Beam Fatigue Results

Macon, GA, 800 με

Daytona, FL, 600 με
Beam Fatigue Results

Orlando, FL

NCAT Test Track

![Graph showing fatigue results for HMA and Gencor in Orlando, FL.]

- HMA: 200 με, 400 με
- Gencor: 400 με

![Graph showing fatigue results for HMA-RAP and WMA-RAP in NCAT Test Track.]

- HMA-RAP: 200 με, 400 με
- WMA-RAP: 800 με
Beam Fatigue Results

- In most cases, WMA improves fatigue resistance of recycled mixtures
- Strain level is very important
- Test Track mixes fatigue endurance limits
 - HMA–RAP = 58 microstrain
 - WMA–RAP = 99 microstrain
- Large variability of results
Conclusions

- Most WMA technologies decreased high and low true binder grade
- WMA decreases mixture stiffness by 5 to 40%
- Tensile strengths decrease with WMA
- TSR and Hamburg results contradict each other
- APA and Hamburg results contradict each other
- Fatigue performance equal or better with WMA
Recommendations

- Need to determine appropriate rutting and moisture tests for WMA-RAP mixtures
- Lab results should be considered with suspicion since field results are almost always positive
Acknowledgments

- The authors thank the Federal Highway Administration for the support of the field projects and the DOTs of AL, FL, NC, OK, SC, and TN, for support of the Test Track Group Experiment.
Questions?