Analyses of Laboratory and Accelerated Pavement Testing Data for Warm-Mix Asphalt Using California Mechanistic-Empirical Design Method

Rongzong Wu and David Jones
UCPRC
Imad Basheer and Venkata Mandapaka
Caltrans

2nd WMA International Conference
St. Louis, Missouri, October 11~13, 2011
Outline

- Project introduction
- CalME introduction
- Data collection
- CalME analysis
- Summary and conclusions
WMA Study - Objectives

- WMS vs. HMA performance
- Guide the implementation of WMA in California
WMA Study – Summary Workplan

- Objectives met through:
 - Laboratory studies
 - Accelerated pavement testing
 - Field testing

- Phased approach followed
 - Phase 1: dry, WMA
 - Phase 2: wet, WMA
 - Phase 3: dry, R-WMA

- Field testing of most WMA pilot projects in CA continues
CalME Introduction

- California Mechanistic-Empirical Design
- Main features
 - For all pavements with flexible surface
 - Include Caltrans empirical design
 - Incremental-recursive
 - Monte-Carlo simulation for reliability
 - Long term simulation with M&R
 - 0.5 minute for 40 year simulation
CalME Calibration and Implementation

- CalME models finalized
- Calibration using HVS and WesTrack data completed
- Standard material library
 - First version established
 - More asphalt concrete mixes being added
 - Needed: recycled materials such as FDR, HIPR, CIPR etc.
Data Needed for CalME

- **Structure**
 - layer and thickness
 - Asphalt bound material parameters
 - Unbound layer stiffness

- **Loading**
 - Pavement temperature history
 - Wheel load history

- **Performance**
 - Rut accumulation history
Pavement Structure

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGAC</td>
<td>2 x 60 mm = 120 mm (4.7 in)</td>
<td>1,000 MPa</td>
</tr>
<tr>
<td>Imported Class 2 Aggregate Base-Course</td>
<td>300 mm (12 in)</td>
<td>150 MPa</td>
</tr>
<tr>
<td>Existing Subbase</td>
<td>250 mm (10 in)</td>
<td>400 MPa</td>
</tr>
<tr>
<td>Bedrock</td>
<td>Semi-infinite</td>
<td>>3,000 MPa</td>
</tr>
</tbody>
</table>
Data Collection – WMA/HMA

- Stiffness master curve
 - Beam bending frequency sweep
- Permanent deformation model
 - RSST-CH (repeated simple shear test at constant height)
- Fatigue damage model
 - Beam bending
WMA/HMA Sampling
Testing For WMA/HMA Stiffness

- Beam bending frequency sweep tests
 - 10, 20 and 30°C
 - 0.01 to 15 Hz
 - 2 replicates
 - Downward bending only
WMA/HMA stiffness master curve

Testing Temperature (°C)

Flexural Stiffness at 10Hz (MPa)

- Control
- Advera
- Evotherm
- Sasobit
Testing for WMA/HMA Fatigue Performance

- Beam bending flexural fatigue
 - Same setup as stiffness testing
 - 20C
 - Two strain levels
 - 2 replicates
Fitting WMA/HMA Lab Fatigue Data - Evotherm
Testing for WMA/HMA Rutting Performance

- RSST-CH Tests
 - 45 and 55C
 - 70, 100 and 130 kPa
 - 2 replicates
Fitting Laboratory Rutting Performance - Advera
Unbound layer stiffness

- Falling weight deflectometer (FWD)
 - Done twice: with cold and hot air temperature
 - 1-m interval
 - 20 days after construction
FWD Back-calculation – SG Stiffness

Subbase+Bedrock Equivalent Stiffness (MPa)

Testing Station (m)

Advera
Sasobit
Evotherm
Control
Pavement Performance – HVS Testing
Pavement Performance – HVS Results

![Graph showing Pavement Performance](image)

- **40kN (50°C)**
- **40kN (55°C)**
- **60kN (55°C)**

Axes:
- **Y-axis:** Average Downward Rut (mm)
- **X-axis:** Number of Accumulated Load Repetitions (Thousand)

Legend:
- 600FD (Control)
- 601FD (Advera)
- 602FD (Evotherm)
- 603FD (Sasobit)
CalME Simulation – Validation 1/2
CalME Simulation – Validation 2/2

The graph shows the relationship between measured downward rut (mm) and predicted downward rut (mm) for WMA and Control materials. The linear equations for WMA and Control are:

- **WMA**: $y = 1.4675x$, $R^2 = 0.9036$
- **Control**: $y = 1.0606x$, $R^2 = 0.7354$
CalME Simulation – Explaining Effects of Unbound Layer Stiffness

![Graph showing predicted downward rut normalized by Section 600FD results for different load repetitions and unbound layer stiffness scenarios.](image)
CalME Simulation – Normalized Rutting Performance

Corrected Average Downward Rut (mm)

Number of Accumulated Load Repetitions (Thousand)

- 40kN (50°C)
- 40kN (55°C)
- 60kN (55°C)

- 600FD (Control)
- 601FD (Advera)
- 602FD (Evotherm)
- 603FD (Sasobit)
Summary and Conclusions

- Laboratory, FWD and HVS test data provides all inputs to CalME.
- CalME prediction matches the shape of the measured with high R^2 value (0.90).
- Large variation of in-situ unbound layer stiffness can only affect HVS results by 20%.
- CalME provides a necessary tool for full scale studies such as HVS.
Questions and Thank You!

Rongzong Wu
rzwu@ucdavis.edu
http://www.ucprc.ucdavis.edu