Evaluation of Warm Mix Asphalt versus Conventional Hot Mix Asphalt for Field and Laboratory-Compacte...
Presentation Outline

• Background
• Study Objectives
• Project Description & Location
• Mixture Properties
• Scope of Work
• Specimen Preparation
• Data Analysis and Results
• Conclusions / Follow-up Work
Brief WMA Background

• Reduction on the viscosity of binder to allow for coating of the aggregate properly

• Chemical-based:
 • 30% reduction of the mixing temperature and no negative effects on rutting *(Hurley and Prowell, 2006)*
 • No reduction of dynamic modulus *(NCAT Report 06-02, 2006)*

• Foaming-based:
 • slightly lower moisture susceptibility compared to conventional HMA *(Wielinski et.al, 2009)*
Study Objectives

• Laboratory evaluation of three mixtures
 – Control HMA mix
 – Foaming-based WMA mix
 – Chemical-based WMA mix

• Testing:
 – Field cored specimens
 – Laboratory-compacted specimens

• Is it reasonable to reheat and test WMA loose mix in the lab?
Project Description & Location

- SR 85, Gila Bend, near Phoenix, Arizona
- Three different sections:
 - Control HMA section
 - Foaming-based WMA section
 - Chemical-based WMA section
Mixture Properties

- 3/4” ADOT 416 special mix
- PG 76-16 binder
- Asphalt content: 4.8%
- Target Air voids: 5.5 ± 0.2 %
- Lab mixing temperature = 330 °F
- Lab compaction temperature = 310 °F

<table>
<thead>
<tr>
<th>Sieve #</th>
<th>Composite w/o Admixture</th>
<th>Specification</th>
<th>Composite w/ Admixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”</td>
<td>100</td>
<td>(100)</td>
<td>100</td>
</tr>
<tr>
<td>1.25”</td>
<td>100</td>
<td>(90-100)</td>
<td>100</td>
</tr>
<tr>
<td>1”</td>
<td>100</td>
<td>(62-77)</td>
<td>76</td>
</tr>
<tr>
<td>3/4”</td>
<td>100</td>
<td>(38-47)</td>
<td>65</td>
</tr>
<tr>
<td>1/2”</td>
<td>86</td>
<td>(11-19)</td>
<td>30</td>
</tr>
<tr>
<td>3/8”</td>
<td>76</td>
<td>(2.5-6.0)</td>
<td>17</td>
</tr>
<tr>
<td>1/4”</td>
<td>64</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>#4</td>
<td>57</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>#8</td>
<td>41</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>#10</td>
<td>37</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>#16</td>
<td>29</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>#30</td>
<td>21</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>#40</td>
<td>16</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>#50</td>
<td>12</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>#100</td>
<td>7</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>#200</td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Scope of Work

• Laboratory specimens compacted at two temp:
 – 270 °F (132 °C)
 – 310 °F (154 °C)

• Laboratory testing included:
 – Dynamic modulus $|E^*|$ test
 – Indirect Diametral Tensile (IDT) Strength test
 – Tensile Strength Ratio (TSR) test for moisture damage evaluation

• Study with limited testing program
Testing Plan

- Foaming-based WMA
 - Field cores
 - Lab-compacted specimens
 - Compacted at 270 F
 - Compacted at 310 F

- Control HMA
 - Field cores
 - Lab-compacted specimens
 - Compacted at 270 F
 - Compacted at 310 F

- Chemical-based WMA
 - Field cores
 - Lab-compacted specimens
 - Compacted at 270 F
 - Compacted at 310 F
Specimen Preparation

- **Field-core specimens**
 - Stack for E^* testing
 - Stacking (SPT by Witczak et al., 2000)
 - Un-stack for IDT & TSR testing

- **Lab-compacted specimens**
 - Reheated and compacted with SGC
 - Cored and sawed for E^*
 - Cut into 3 discs for IDT & TSR testing
Dynamic Modulus |E*| Test

- **AASHTO TP 62-07**
- **Test temperature:** 70 °F
- **Loading frequencies:** 25, 10, 5, 1, 0.5 and 0.1 Hz
- **Recoverable strain:** 50-150 με
- **Two spring-loaded LVDTs to measure the deformations**
E* Results – Field Cores

- Field Cores

Dynamic Modulus (MPa) vs. Frequency (Hz)

- CONTROL
- FOAMING-BASED
- CHEMICAL-BASED

1 MPa = 145.04 psi
E* Results – Control-Lab

Dynamic Modulus (MPa) vs Frequency (Hz)

- CONTROL @ 310 F
- CONTROL @ 270 F

1 MPa=145.04 psi
E* Results – Foaming-Lab

Dynamic Modulus (MPa) vs. Frequency (Hz)

- FOAMING @ 310 F
- FOAMING @ 270 F

1 MPa = 145.04 psi
E* Results – Lab Specimens

![Graph showing dynamic modulus (MPa) vs. frequency (Hz) for different specimens.]

- CONTROL @ 310 F
- CONTROL @ 270 F
- FOAMING @ 310 F
- FOAMING @ 270 F
- CHEMICAL @ 310 F
- CHEMICAL @ 270 F

1 MPa = 145.04 psi
Statistical Analysis for E*-Lab Spec.

- Paired t-distribution for two variables
- Significance level α of 5%

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Control Lab @ 270 °F</th>
<th>Control Lab @ 310 °F</th>
<th>Foaming Lab @ 270 °F</th>
<th>Foaming Lab @ 310 °F</th>
<th>Chemical Lab @ 270 °F</th>
<th>Chemical Lab @ 310 °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>12729</td>
<td>13026</td>
<td>12629</td>
<td>12397</td>
<td>11834</td>
<td>12132</td>
</tr>
<tr>
<td>10</td>
<td>10743</td>
<td>11249</td>
<td>10736</td>
<td>10688</td>
<td>10354</td>
<td>10650</td>
</tr>
<tr>
<td>5</td>
<td>9407</td>
<td>9966</td>
<td>9177</td>
<td>9346</td>
<td>9205</td>
<td>9541</td>
</tr>
<tr>
<td>1</td>
<td>6810</td>
<td>7339</td>
<td>6508</td>
<td>6860</td>
<td>6760</td>
<td>7051</td>
</tr>
<tr>
<td>0.5</td>
<td>5836</td>
<td>6397</td>
<td>5586</td>
<td>5739</td>
<td>5775</td>
<td>6129</td>
</tr>
<tr>
<td>0.1</td>
<td>3869</td>
<td>4361</td>
<td>3711</td>
<td>3922</td>
<td>3829</td>
<td>4211</td>
</tr>
<tr>
<td>d_f</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{Stat}</td>
<td>-12.18</td>
<td>-1.19</td>
<td>-21.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{Critical}$</td>
<td>2.02</td>
<td>2.02</td>
<td>2.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{Critical}$</td>
<td>2.57</td>
<td>2.57</td>
<td>2.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Diff. Between Sample Means</td>
<td>SIGNIFICANT</td>
<td>INSIGNIFICANT</td>
<td>SIGNIFICANT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Indirect Diametral Tensile (IDT) Strength Test

- AASHTO TP-94
- Test was performed @ 70 °F
- Specimen: 4” (100 mm) diameter and 2.0” (50 mm) thick
- Constant loading rate: 2 in/min (50 mm/min)
- IDT value is determined as the peak tensile strength value
IDT Results - Field Cores

![Graph showing peak tensile strength comparison between CONTROL, FOAMING-BASED, and CHEMICAL-BASED mix types. The graph indicates that CHEMICAL-BASED has the highest peak tensile strength at 1303 kPa, followed by FOAMING-BASED at 760 kPa, and CONTROL at 836 kPa.]

1 psi = 6.9 kPa
Tensile Strength Ratio (TSR), Moisture Sensitivity Test

- AASHTO T283
- Evaluate moisture damage
- TSR: Ratio of conditioned to unconditioned IDT
- Constant loading rate: 2 in/min (50 mm/min)

Freezing Cycle

Thaw Cycle
- Specimens compacted at 270°F
- ADOT Specs for acceptable TSR > 80%
Conclusions

A. Field Cores - E* and IDT results
 1. Both control and foaming-based WMA mixtures showed comparable results
 2. Chemical-based WMA mixture was relatively higher??

B. Laboratory compacted specimens
 1. Decreasing the compaction temperatures from 310 to 270 °F have less effect on the WMA mixes compared to control HMA
Conclusions

i. IDT Test:
 • Control: Strength reduced by 10% between temp
 • WMA: Strength reduced by 0.5 – 1.8%

ii. E* test:
 • Control: Strength reduced by 8%
 • WMA: strength reduced by 2 - 5%

2. Very good result despite doubts of the reheating

3. TSR results for all 3 mixtures were comparable, but lower than specifications, probably due to harsh freezing cycle.
Follow Up Work

• Hamburg Wheel Tracking test
 • Disagreed with TSR
• Field Evaluation Trip
 • Excellent performance
Recommendation

• Future projects: perhaps a portable gyratory compactor can be used at the asphalt plant in order to avoid reheating the WMA mixes
Acknowledgements

• ADOT Materials Group
 • Paul Burch, Pavement Design Section Engineer
 • Scott Weinland Pavement Materials Testing Section
• Mark Belshe, formerly with FNF Construction
• Jose Rodriguez, ASU
Thank you

Questions?