Key Results from a Comprehensive Accelerated Loading, Laboratory, and Field Testing Study on Warm-Mix Asphalt in California

David Jones, Rongzong Wu, Bor-Wen Tsai
University of California Pavement Research Center
Cathrina Barros, Joseph Peterson
California Department of Transportation

2nd International Warm-Mix Asphalt Conference
St Louis, MO, October 2011
Summary

- Introduction
- Caltrans research objectives
- APT and lab testing results
- Field tests
- Conclusions & implementation
Introduction

- Rapid growth in the use of WMA
- In 2006, limited research to back up claims
 + Fundamental properties of HMA change
 - Lower production and compaction temperatures
 - Less oxidation of the binder
 - Additives in the mix
 + Many projects, but limited long-term monitoring
- Better understanding required before full implementation
Introduction
Summary

- Introduction
- **Caltrans research objectives**
- APT and lab testing results
- Field tests
- Conclusions & implementation
California Research Objectives

- Determine whether the addition of additives to reduce the production and construction temperatures of asphalt concrete influences performance.
- Investigate additional benefits:
 - Use in rubberized AC
 - Increased RAP content
 - Night paving
 - Late season paving
 - Long hauls
 - Overcome environmental constraints, etc
- Guide the implementation of WMA in California
Long-Haul Rubberized AC
Workplan Summary

- Objectives met through:
 + Laboratory studies
 + Accelerated pavement testing
 + Field testing
- Phased approach followed
- Phase 1 & 2 DGAC (complete)
 + 3 most prominent technologies in 2007
 - Advera WMA®
 - Evotherm™
 - Sasobit®
 + Rutting and moisture sensitivity
Workplan Summary

- **Phase 3, R-WMA-G**
 - 7 technologies/each group
 - Advera® WMA.
 - Astec Double Barrel® Green.
 - Cecabase RT®.
 - Evotherm DAT™.
 - Gencor Ultrafoam GX™.
 - Rediset™ WMX.
 - Sasobit®

- **Lab studies**
 - Rutting & cracking performance
 - Moisture sensitivity
 - Other
 - Durability (OGFCs)
 - Aging
 - Emissions
Workplan Summary

- Accelerated Pavement Testing
 - Test track construction monitoring
 - Rutting
 - Moisture sensitivity
 - Cracking

- Field studies
 - Constructability
 - Long-term performance
Summary

- Introduction
- Caltrans research objectives
- APT and lab testing results
- Field tests
- Conclusions & implementation
Phase 1 & 2 Summary

- Testing
 + 18 months of HVS testing
 + 12 months of lab testing
 + Months of data analysis

- Reports completed:
 + 1st Level Report: Construction & Phase 1 Study
 + 1st Level Report: Phase 2 Study & forensic investigation
Phase 1 & 2 Conclusions

- No indication that the three warm-mix additives tested influence long-term rutting & fatigue performance or increase moisture sensitivity
- Construction quality/engineering remains a key concept
- Key issues
 + Beware wet aggregates
 + Beware initial "tenderness" because of less binder oxidation
Phase 2 Rutting

Rut Depth (mm)

HVS Repetitions

Rut Depth (mm)

HVS Repetitions

UCPRC
Example Initial Stiffness

WMA FMFC (Wet, Tref = 20°C)

- E^* (MPa)
- Reduced Ln(freq) (freq: Hz)

Legend:
- DGAC
- Sasobit
- Advera
- Evotherm
- Gamma Fitted Lines
- Series6
- Series7
- Series8
Phase 3 Summary

- **Testing**
 - 9 months of HVS testing
 - 9 months of lab testing
 - Additional APT to assess aging effect

- **Reports completed:**
 - 1st Level Report: Phase 3 Study
 - 1st Level Report: Construction emissions
 - 1st Level Report: Lab mix, lab compact study
Ph 3 Observations & Conclusions

- WMA mixes had significantly less smoke
- WMA mixes were notably more workable
- Compaction poor
 + Difference between Control mixes and WMA on Day-1
 + No difference on Day-2
- WMA had equal or better performance on 4 of 7
 + Lower performance on 2 (subgrade moisture)
 + Comparative performance on 1 (incorrect binder content)
Phase 3a Rutting

![Graph showing Phase 3a Rutting with different load repetitions and peak rut depths for Control, Cecabase, Evotherm, and Gencor]
Phase 3b Rutting

Number of Load Repetitions (x 1,000)

Average Maximum Rut Depth (mm)

Control
Advera
Astec DBG
Rediset
Sasobit

40kN
60kN
80kN
Example Initial Stiffness

E^* (MPa)

G1 Control G2 Gencor G3 Evotherm G4 Cecabase

WET

$\ln(\text{freq})$ (freq: Hz)
Ph 3 Observations & Conclusions

- WMA mixes had significantly less smoke
- WMA mixes were notably more workable
- Compaction poor
 - Difference between Control mixes and WMA on Day-1
 - No difference on Day-2
- WMA had equal or better performance on 4 of 7
 - Lower performance on 2 (subgrade moisture)
 - Comparative performance on 1 (incorrect binder content)

- Key Issues
 - Beware temperature limits
 - Final conclusions after completion of lab testing and aging effects study
 - Emissions dependent on technology
Phase 3 Emissions

Before Compaction
After Compaction

Mix

WMA 1
WMA 2
WMA 3
WMA 4
Control 1
Control 2
Control 3
WMA 5
WMA 6
WMA 7

Emissions
Summary

- Introduction
- Caltrans research objectives
- APT and lab testing results
- Field tests
- Conclusions & implementation
Field Tests

- Morro Bay (SLO-1)
 + PM, cold coastal
- Pt Arena (Men-1)
 + R-OGFC, long haul, cold coastal
- Mendocino (Men-1)
 + R-OGFC, long haul, cold coastal
- Orland (Gle-I5)
 + Night pave, high traffic
- Marysville (Yub-70)
 + Agricultural traffic
Orland: 2009 - 2011

Control, Evotherm
Marysville: 2009-2011
Summary

- Introduction
- Caltrans research objectives
- APT and lab testing results
- Field tests
- Conclusions & implementation
Conclusions

- Comprehensive, systematic study to guide implementation of WMA in California
 - Laboratory, APT and field performance
- Confirmed that equal performance can be obtained from WMA
 - Beware initial tenderness/initial higher rutting
 - Beware moist aggregates
 - Consider effects of H-WMA vs W-WMA, especially on RAP mixes
 - WMA does not replace good engineering practice

- Implementation
 - Pilot projects 2007-2010
 - Statewide implementation in 2011 with more than 1 million tons placed in 2011 paving season
Thank you!

David Jones
djjones@ucdavis.edu
www.ucprc.ucdavis.edu

2nd International Warm-Mix Asphalt Conference
St Louis, MO, October 2011