Ontario’s Experience with WMA

2nd International Warm-Mix Conference
St. Louis, Missouri
October 11-13, 2011

Sayed Tabib, Chris Raymond, Loan Le
Materials Engineering and Research Office
Ministry of Transportation of Ontario (MTO)
Overview

• MTO Strategic Directions 2010-2015
• WMA Definition
• Benefits of WMA
• Challenges of WMA
• MTO WMA Trials
• Additional Requirements for 2010 Contracts
• Test Results Summary
• WMA Task Group
• MTO’s Vision for 2011
• WMA Requirements for 2011 Contracts
• Closing Remarks
MTO Strategic Directions 2010 - 2015

1. A provincial expansion plan developed in collaboration with Policy & Planning Division.
2. A strengthened policy capability to influence ministry and government activities in support of division initiatives.
3. A workforce that is poised to meet our changing business directions.
4. The greenest roads in North America.
5. A quarter of our business delivered in innovative and improved ways.
6. Seventy-five cents of every construction dollar spent directly on pavements and bridges.
7. In collaboration with industry, develop performance-based specifications for all contracts.
WMA Definition

MTO adopted NAPA’s Definition of WMA

- A group of technologies which allow a reduction in the temperatures at which asphalt mixtures are produced and placed. WMA can be separated into 3 categories:
 - Chemical Processes
 - Organic Additives
 - Foaming Processes (water-bearing additives or water-based processes)
- WMA allows compaction temperature to be reduced by 20-50°C while still achieving adequate compaction
Benefits of WMA

Comparing to HMA, WMA has the following benefits:

- Reduces energy (fuel) consumption
- Reduces asphalt plant emissions
- Reduces paving crew exposure to emissions
- Improves compaction and joint quality
- Facilitates late season paving due to increased workability
- Reduces asphalt binder aging (less potential for cracking)
- Facilitates longer hauling distances
- Allows for earlier opening to traffic after construction
- Potential for higher RAP content
Challenges of WMA

• Costs?
• Lack of knowledge/experience with WMA
• Effectiveness of different technologies – not all are the same
• Ensuring long term performance including moisture susceptibility
• Mix design procedure
• Recyclability
• Restrictions/adjustments at the asphalt plant
MTO WMA Trials

- Since 2008, about 70,000 tonnes of WMA has been paved in 15 MTO contracts
- 2008 - 1 trial contract and 2 “change proposals”
- 2009 - 2 contractor change proposals
- 2010 - 9 trial contracts and 1 change proposal
- WMA specifications were developed in 2009 for
 - WMA trials
 - Optional WMA (contractor has an option to bid for WMA)
2010 WMA Trials

<table>
<thead>
<tr>
<th>Contract #</th>
<th>WMA Mix Type</th>
<th>PGAC</th>
<th>WMA Additive</th>
<th>Asphalt Plant Type/Burner Type</th>
<th>Fuel Type</th>
<th>Date of Paving</th>
<th>HMA Control Section?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SUP 12.5FC 2</td>
<td>64-28</td>
<td>Hypertherm (chemical)</td>
<td>Drum plant - Not open flame burner</td>
<td>Natural Gas</td>
<td>September 2010</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>SUP 12.5FC 2</td>
<td>64-28</td>
<td>Hypertherm (chemical)</td>
<td>Drum plant - Induced draft burner</td>
<td>Natural Gas</td>
<td>September 2010</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>SUP 12.5FC 1</td>
<td>64-28</td>
<td>Hypertherm (chemical)</td>
<td>Batch plant - counter-flow drum burner</td>
<td>Natural Gas</td>
<td>September 2010</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>SUP 12.5FC 1</td>
<td>58-34</td>
<td>Evotherm 3G (chemical)</td>
<td>Batch plant</td>
<td>Diesel</td>
<td>July 2010</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm DAT (chemical)</td>
<td>Drum plant</td>
<td>Fuel Oil</td>
<td>November 2010</td>
<td>HMA padding</td>
</tr>
<tr>
<td>6</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm 3G (chemical)</td>
<td>Batch plant - Forced draft burner</td>
<td>Fuel Oil</td>
<td>August 2010</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm 3G (chemical)</td>
<td>Batch plant - Counter-flow drum burner</td>
<td>Natural Gas</td>
<td>September 2010</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm 3G (chemical)</td>
<td>No information</td>
<td>Natural Gas</td>
<td>July 2010</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>SUP 12.5FC 1</td>
<td>58-28</td>
<td>Evotherm 3G (chemical)</td>
<td>No information</td>
<td>Natural Gas</td>
<td>October 2010</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>SUP 12.5FC 2</td>
<td>58-28</td>
<td>Sasobit (organic)</td>
<td>No information</td>
<td>Natural Gas</td>
<td>October 2010</td>
<td>Yes</td>
</tr>
</tbody>
</table>

FC 1 = coarse aggregates must be supplied from a premium source; FC 2 = fine and coarse aggregates must be supplied from a premium source
Stack emissions testing

Asphalt fumes monitoring

No visible fumes

RAP
Additional Requirements for 2010 Contracts

- WMA suppliers’ Recommendations
- One point mix design check (for most technologies)
- Maximum paving temperature (125 °C)
- Emissions testing
 - Testing at the asphalt plant
 - Testing on the job site (workers exposure)
- Mixing and paving temperature data
- TSR on the production samples
- Additional samples of HMA/WMA for Hamburg Test
- WMA paving limits (Station + GPS)
Emissions Testing Requirements

• Testing at asphalt plant:
 • CO, CO₂, NOₓ, SOₓ, VOC & TPM
 • single 224 minute particulate test at the baghouse exhaust stack
 • triplicate 60 minute emission tests for combustion gases
• Testing at the paving site (workers exposure):
 • 5 hours of opacity and industrial hygiene sampling for total dust and benzene soluble fraction during paving
 • Monitors installed on the operator of the paver and one worker at the rear of the paver
• Measurements for both HMA and WMA
End Result Specification (ERS) Data

<table>
<thead>
<tr>
<th>Contract</th>
<th>Mix Type</th>
<th>AC Content (Lot Avg.)</th>
<th>Compaction (Lot Avg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JMF</td>
<td>HMA</td>
</tr>
<tr>
<td>1</td>
<td>SUP12.5FC 2</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>2</td>
<td>SUP12.5FC 2</td>
<td>5.2</td>
<td>5.4</td>
</tr>
<tr>
<td>3</td>
<td>SUP12.5FC 1</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>SUP12.5FC 1</td>
<td>4.9</td>
<td>No HMA section</td>
</tr>
<tr>
<td>5</td>
<td>SUP12.5</td>
<td>4.7</td>
<td>No HMA section</td>
</tr>
<tr>
<td>6</td>
<td>SUP12.5</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>7</td>
<td>SUP12.5</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>8</td>
<td>SUP12.5</td>
<td>5.3</td>
<td>5.1</td>
</tr>
<tr>
<td>9</td>
<td>SUP12.5FC 1</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>10</td>
<td>SUP12.5FC 2</td>
<td>4.6</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Moisture Sensitivity Testing (AASHTO T283)

Contract	Mix Type	Mix Design TSR	Production TSR
==========	------------	----------------	----------------------
1	SUP12.5FC 2	80	90 – 96 (92)
2	SUP12.5FC 2	80	87 – 88 (87)
3	SUP12.5FC 1	81	74 – 88 (82)
4	SUP12.5FC 1	84	44 – 90 (73)
5	SUP12.5	81	63 – 73 (67)
6	SUP12.5	82	59 – 99 (78)
7	SUP12.5	96	76 – 94 (86)
8	SUP12.5	81	81 – 86 (83)
9	SUP12.5FC 1	92	84 – 117 (97)

Numbers in parentheses denote mean value
Hamburg Wheel Track Testing (Modified)

The test is used to evaluate the rutting/stripping potential of various asphalt mixes including WMA

Specimen Preparation
- 4 briquettes are compacted by SGC at 6-8% voids using loose asphalt mix
- Briquettes are cut and fit into 2 metal moulds

Testing
- Moulds are submerged in 60°C water bath
- Test is run for 20,000 load applications (6 hours)
- Load is applied via pneumatic tires
Hamburg Test Results

<table>
<thead>
<tr>
<th>Contract</th>
<th>Mix Type</th>
<th>PGAC</th>
<th>WMA Technology</th>
<th>Max. Rut Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SUP 12.5FC 2</td>
<td>64-28</td>
<td>Hypertherm</td>
<td>HMA: 7.9, WMA: 5.7</td>
</tr>
<tr>
<td>2</td>
<td>SUP 12.5FC 2</td>
<td>64-28</td>
<td>Hypertherm</td>
<td>HMA: 5.3, WMA: 5.0</td>
</tr>
<tr>
<td>3</td>
<td>SUP 12.5FC 1</td>
<td>64-28</td>
<td>Hypertherm</td>
<td>HMA: 1.3, WMA: 1.9</td>
</tr>
<tr>
<td>4</td>
<td>SUP 12.5FC 1</td>
<td>58-34</td>
<td>Evotherm 3G</td>
<td>HMA: N/A, WMA: 7.5</td>
</tr>
<tr>
<td>5</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm DAT</td>
<td>HMA: 3.2, WMA: 4.6</td>
</tr>
<tr>
<td>6</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm 3G</td>
<td>HMA: 4.9, WMA: 5.0</td>
</tr>
<tr>
<td>7</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm 3G</td>
<td>HMA: 1.5, WMA: 3.4</td>
</tr>
<tr>
<td>8</td>
<td>SUP 12.5</td>
<td>58-34</td>
<td>Evotherm 3G</td>
<td>HMA: 1.8, WMA: 3.2</td>
</tr>
<tr>
<td>9</td>
<td>SUP 12.5FC 1</td>
<td>58-28</td>
<td>Evotherm 3G</td>
<td>HMA: 3.5, WMA: 3.6</td>
</tr>
<tr>
<td>10</td>
<td>SUP 12.5FC 2</td>
<td>58-28</td>
<td>Sasobit</td>
<td>HMA: 2.0, WMA: 1.7</td>
</tr>
</tbody>
</table>
Temperature Data for WMA

<table>
<thead>
<tr>
<th>Contract</th>
<th>Mixing Temp (°C)</th>
<th>Paving Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125 – 135</td>
<td>110 – 125</td>
</tr>
<tr>
<td>2</td>
<td>140 – 150</td>
<td>120 – 140</td>
</tr>
<tr>
<td>3</td>
<td>135 – 140</td>
<td>115 – 120</td>
</tr>
<tr>
<td>4</td>
<td>145 – 155</td>
<td>125 – 145</td>
</tr>
<tr>
<td>5</td>
<td>170 – 190</td>
<td>140 – 185</td>
</tr>
<tr>
<td>6</td>
<td>130 – 140</td>
<td>120 – 130</td>
</tr>
<tr>
<td>7</td>
<td>140 – 145</td>
<td>110 – 120</td>
</tr>
<tr>
<td>8</td>
<td>112 - 145</td>
<td>115 - 144</td>
</tr>
<tr>
<td>9</td>
<td>135 – 145</td>
<td>120 – 130</td>
</tr>
<tr>
<td>10</td>
<td>140 - 150</td>
<td>130 - 145</td>
</tr>
</tbody>
</table>
WMA Emissions Testing Results

CO2 Emission Comparison

CO Emission Comparison

Materials Engineering and Research Office
WMA Emissions Testing Results

NOx Emission Comparison

<table>
<thead>
<tr>
<th>Cont. 1</th>
<th>Cont. 2</th>
<th>Cont. 3</th>
<th>Cont. 4</th>
<th>Cont. 5</th>
<th>Cont. 6</th>
<th>Cont. 7</th>
<th>Cont. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
</tr>
<tr>
<td>32</td>
<td>38</td>
<td>39</td>
<td>36</td>
<td>29</td>
<td>25</td>
<td>68</td>
<td>56</td>
</tr>
<tr>
<td>52</td>
<td>78</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SO2 Emission Comparison

<table>
<thead>
<tr>
<th>Cont. 1</th>
<th>Cont. 2</th>
<th>Cont. 3</th>
<th>Cont. 4</th>
<th>Cont. 5</th>
<th>Cont. 6</th>
<th>Cont. 7</th>
<th>Cont. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>24</td>
<td>22</td>
<td>18</td>
<td>21</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>12</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
WMA Emissions Testing Results

VOC Emission Comparison

Particulates Emission Comparison
WMA Emissions Testing Summary

- Asphalt plant emissions were not significantly different, although slightly lower for WMA
- At the paving site:
 - Benzene soluble fraction and visible emissions were significantly lower for WMA
 - The results for total dust were inconclusive
2010 WMA Trials Summary

- WMA was paved at temperatures 10-30°C lower than HMA without any adverse effect on mix properties or compaction
- TSR results for WMA were significantly variable with values ranging from 44 to 117 percent
- In general, the average ERS compaction results for WMA was either equal or better than HMA
- All the PGAC samples were in compliance with AASHTO M320 for both HMA and WMA
- Hamburg rut depths were comparable between WMA and HMA
WMA Task Group

First WMA Task Group meeting was held on Nov 12, 2010

Rationale

• WMA is a rapidly growing technology
• Leverage the experience of others and deal with challenges in an equitable manner

Members

• MTO
• Ontario Hot Mix Producers Association
• Ontario Good Roads Association
WMA Task Group

Objectives
- Develop framework, identify focus areas and timetable for the TG
- Compile a WMA state of the practice guide
- Adopt mix design procedures for various WMA technologies
- Establish contractor guidelines for WMA use
- Incorporate feedback from WMA suppliers
- Develop educational materials to promote WMA
- Provide recommendations to improve current WMA specification

Sub-groups
- Mix Design Sub-Group
- Contractor’s Sub-Group
- WMA Supplier’s Sub-Group
- Education Sub-Group
MTO’s Vision for 2011

• Past WMA trials have been successful and support increased WMA usage
• MTO has targeted 10% WMA use in 2011 on contracts meeting either of the following criteria:
 • Contracts for which late-season paving is anticipated
 • Multilane highways where operational constraints prevent echelon paving
 • Projects within urban areas where emissions reduction is of greatest benefit
 • Contracts where long haul distances are expected
 • Asphalt overlay on a pavement with sealed cracks
• WMA will be included in larger tonnage contracts than in previous years
• WMA is to be used in surface and binder course layers
• A comprehensive performance monitoring program will be developed for WMA trials
WMA Requirements for 2011 Contracts

• Superpave mix design according to Draft LS-318
 • Flow Number in accordance with AASHTO TP79 (for info only)
 • Coating test in accordance with AASHTO T195 (for info only)
 • Compactability test as described in LS-318 (for info only)
 • Minimum TSR of 0.8 is required
 • For completed HMA designs “temperature bracketing” is needed to confirm WMA volumetrics

• TSR on the production samples performed by QA lab (for info only)

• WMA suppliers’ Recommendations

• Contractors are encouraged to record the fuel usage at the asphalt plant during WMA/HMA production
Closing Remarks

• WMA is an innovative green technology that supports our strategic directions

• MTO will continue to work with WMA Task Group to investigate WMA and improve our WMA specification

• Given the environmental benefits and potential performance improvements, the life cycle cost of WMA is expected to be similar to HMA

• By targeting WMA use on 10% of 2011 contracts, MTO is demonstrating leadership with this technology and providing asphalt industry the opportunity to invest and build confidence in WMA

• Many agencies in North America, including MTO, have been successful with WMA and intend to increase WMA usage in future
Thank You

Seyed Tabib, P. Eng.
Senior Bituminous Engineer
Materials Engineering and Research Office
Ontario Ministry of Transportation
Tel: 416-235-3544
Email: seyed.tabib@ontario.ca