Rutting and Fatigue Performance Tests

Ramon Bonaquist, Ph.D., P.E.
Advanced Asphalt Technologies, LLC
Outline

• What is a Performance Test
• Rutting and Fatigue Tests
 – Equipment
 – Time and Complexity
 – Standardization
 – Example Uses
• Needed Work
• Summary
What is a Performance Test?

• Test that indicates how a mix will resist a particular form of distress
 – Rutting
 – Cracking
 • Bottom-Up Fatigue
 • Top-Down
 • Reflective
 • Thermal Cracking
 – Moisture Damage
• Some are pass/fail, some are used in models
Rutting Performance Tests
Strength & Repeated Load

Wheel Tracking
- Hamburg
- Asphalt Pavement Analyzer

Flow Number
Flow Time
Repeated Shear
Constant Height
High Temperature
Indirect Tensile
Wheel Tracking Tests

Hamburg

Asphalt Pavement Analyzer
Wheel Tracking Test Standardization

- Hamburg
 - AASHTO T324, *Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)*

- Asphalt Pavement Analyzer
 - AASHTO TP63 *Determining the Rutting Susceptibility of Hot Mix Asphalt Using the Asphalt Pavement Analyzer (APA)*
Strength and Repeated Load Tests

Flow Number
Flow Time

High Temperature
Indirect Tensile

Repeated Shear at Constant Height
Strength & Repeated Load Standardization

• Repeated Shear
 – AASHTO T320, *Determining the Permanent Shear strain and Stiffness of Asphalt Mixtures Using the Superpave Shear Tester (SST)*

• Flow Number
 – AASHTO TP79, *Determining the Dynamic Modulus and Flow Number for Hot Mix Asphalt (HMA) Using the Asphalt Mixture Performance Tester (AMPT)*

• Flow Time
 – Draft, but no AASHTO or ASTM

• High Temperature IDT
 – Draft, but no AASHTO or ASTM
Beyond Research

- Wheel track testing is part of mix design process in several states

- Leaders
 - APA in Georgia
 - Hamburg in Texas
IDT in Acceptance

- Port Facility Upgrade
 - 200,000 tons of HMA
 - Client extremely concerned about rutting
 - High temperature IDT used in acceptance
IDT Control Chart

Lot Value Mean 2 Sigma 3 Sigma Minimum

Tensile Strength, psi

Lot

NAPA 56th Annual Meeting
2/7/2011
Fatigue Performance Tests

Repeated Load
- Flexural Beam
- Continuum Damage
- Texas Overlay

Fracture Energy
- Indirect Tensile
- Disk-Shaped Compact Tension
- Semi-Circular Bend
- Fenix
Repeated Load Tests

Flexural Fatigue
Continuum Damage
Repeated Load Tests 2

Texas Overlay
Repeated Load Fatigue Standardization

- **Flexural**
 - AASHTO T321, *Determining the Fatigue Life of Compacted Hot Mix Asphalt (HMA) Subjected to Repeated Flexural Bending*

- **Continuum Damage**
 - Draft, but no AASHTO or ASTM

- **Texas Overlay**
 - TXDOT, but no AASHTO or ASTM
Fracture Energy Tests

Disk-Shaped Compact Tension Test

Indirect Tension Test
Fracture Tests Continued

Fénix Test

Semi-Circular Bend Test
Fracture Energy Standardization

• Disk-Shaped Compact Tension

• Indirect Tension
 – Draft, but no AASHTO or ASTM

• Semi-Circular Bend
 – Draft, but no AASHTO or ASTM

• Fénix
 – Spanish, but no AASHTO or ASTM
Beyond Research

• Flexural Fatigue was specified by CalTrans on I-710 project
 – Mix design

• Overlay Test was specified by NJDOT on a couple of projects
 – Mix design and acceptance
 – Tests conducted at Rutgers University

• Continuum Damage
 – Higher RAP Content mixtures
MSHA Field Project

- SMA With 10% RAP
- I-270 Near Washington Beltway
- RAP and Virgin Mixtures
- Evaluations
 - Modulus
 - Permanent Deformation
 - Continuum Damage Fatigue
Plant Aged Dynamic Modulus

E* (ksi)

<table>
<thead>
<tr>
<th>Reduced Frequency, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.E-06</td>
</tr>
<tr>
<td>1.E-04</td>
</tr>
<tr>
<td>1.E-02</td>
</tr>
<tr>
<td>1.E+00</td>
</tr>
<tr>
<td>1.E+02</td>
</tr>
<tr>
<td>1.E+04</td>
</tr>
<tr>
<td>1.E+06</td>
</tr>
</tbody>
</table>

Log Shift Factor

Temperature, C

-3 -2 -1 0 1

Without RAP

With RAP

Advanced Asphalt Technologies, LLC

“Engineering Services for the Asphalt Industry”
Test Development

Need
- Research
 - Draft Test Method
 - Prototype Equipment
 - Validated Criteria
- Commercial Equipment
 - Specification
 - First Article Equipment

Ruggedness
- Critical Aspects
- Improve
 - Test Method Equipment
- Round Robin Testing
 - Precision and Bias
- Engineering Practice
Rutting Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Validated Criteria or Model</th>
<th>AASHTO or ASTM Standard</th>
<th>Commercial Equipment</th>
<th>Precision Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>APA</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Flow Number</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Almost</td>
</tr>
<tr>
<td>Flow Time</td>
<td>?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Repeated Shear</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>High Temp. IDT</td>
<td>?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>
Fatigue Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Validated Criteria or Model</th>
<th>AASHTO or ASTM Standard</th>
<th>Commercial Equipment</th>
<th>Precision Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Continuum Damage</td>
<td>?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Texas Overlay</td>
<td>?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>IDT FE</td>
<td>?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Disk-Shaped Compact Tension</td>
<td>?</td>
<td>Y</td>
<td>Y</td>
<td>Almost</td>
</tr>
<tr>
<td>Semi-Circular Bend</td>
<td>?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Fénix</td>
<td>?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>
Importance of Fabrication
NCHRP 9-29 ILS

Cores Fabricated in a Single Lab

8 Labs

9.5 mm Dense
12.5mm SMA
25 mm Dense

Loose Mix

Dynamic Modulus
Confined Flow
Unconfined Flow

Dynamic Modulus
Confined Flow
Unconfined Flow

NAPA 56th Annual Meeting
2/7/2011

Advanced Asphalt Technologies, LLC
“Engineering Services for the Asphalt Industry”
|E*| Reproducibility

- 9.5 mm Dense Loose Mix
- 12.5 mm SMA Loose Mix
- 25 mm Dense Loose Mix
- 9.5 mm Dense Cores
- 12.5 mm SMA Cores
- 25 mm Dense Cores

Reproducibility Coefficient of Variation, %

|E*|, MPa

Reproducibility Coefficient of Variation, %

100 1000 10000
Summary

• Several rutting and fatigue performance tests available
 – Mostly used in research and product evaluation
 – Some rutting tests are used in practice
 – Limited use of fatigue tests in practice

• Further development needed
 – Verification
 – Standardization
 – Precision
 – Specimen fabrication
Ramon Bonaquist
Advanced Asphalt Technologies, LLC
108 Powers Court, Suite 100
Sterling, VA 20166
703-444-4200
aatt@erols.com