

#### USE OF THE AMPT TO EVALUATE PAVEMENT PERFORMANCE ASPHALT MIXTURE ETG MAY 9<sup>TH</sup>, 2018

Derek Nener-Plante, M.S., P.E.

Asphalt Pavement Engineer



Integrity – Competence - Service

### Disclaimer / Acknowledgements

MaineDOT has not yet gained expertise in the AMPT and the analysis methods... yet.

#### Thanks to the following for their assistance:

- Dr. Kim & NC State Students / Staff
- **FHWA**
- MaineDOT lab staff

### **Talking Points**

**Purpose:** To give the motivation, methodology, early results, and lessons learned from Maine's work with the AMPT

#### How?

- Maine's overall plan for AMPT
- Proficiency Test Results
- Performance-Related Specification Shadow Project
- PEMD

### Background - MaineDOT

- Responsible for over 8,400 centerline miles of the 24,000 total miles in Maine
- Average capital program of \$269 million per year
- Superpave mix design
   full QA system based
   upon on volumetrics



#### **Motivation for Change**



### Background – HMA Process

- 6
- HMA acceptance program based upon PWL Volumetric requirements (Voids, VMA, VFB, AC)
- Most mix designs blend different combinations of aggregates
  12 Desert Rd. Freezet. Mainedot TESTING LABORATORIES. 219 Hogen Rd. Banger
  - Crushed ledge product
  - (granite, sandstone, limestone, etc.)
  - Crushed gravel product
  - Natural sands
  - RAP (10% 20%)
- Using un-calibrated PavementME for design

| Descriptio<br>NIN: 020 |             |         |       |          |          |         |            |             |           |           |         |            |         |           |
|------------------------|-------------|---------|-------|----------|----------|---------|------------|-------------|-----------|-----------|---------|------------|---------|-----------|
|                        |             |         |       |          |          |         |            | Spec:       | 01/01/17  | lte       | em No.: | 403.2081   | Lot N   | lo 3      |
|                        |             |         |       | er Broo  | k, Islan | d Falls |            |             |           |           |         |            |         |           |
| IMN: LAN               |             | 5D-12R- |       |          |          |         |            |             |           |           |         |            |         |           |
| Ref. No.               | Sub-<br>lot | 12.5    | 2.36, | 0.600, % | 0.300, % | 0.075,  | PGAB,<br>% | Voids,<br>% | VMA,<br>% | VFB,<br>% | F/Be    | In-Place [ | Density | Comp<br>% |
|                        | USL         | 100     | 43    | 21       | 12       | 6.0     | 6.2        | 5.5         |           | 84        | 1.2     |            |         | 97.5      |
| 1                      | arget       | 99      | 39    | 18       | 10       | 5.2     | 5.8        | 4.0         |           |           |         | Ref.       | Sub-    |           |
|                        | LSL         | 92      | 35    | 15       | 8        | 3.2     | 5.4        | 2.5         | 15        | 65        | 0.6     | 110. 101   |         | 92.5      |
| 321753                 | 1           | 99      | 41    | 18       | 10       | 4.8     | 5.9        | 4.2         | 16.7      | 75        | 0.9     | 321756     | 1       | 94.2      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321757     | 2       | 94.0      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321758     | 3       | 92.5      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321759     | 4       | 93.1      |
| 321754                 | 2           | 98      | 38    | 18       | 10       | 4.7     | 5.8        | 3.4         | 15.8      | 78        | 0.9     | 321760     | 5       | 93.0      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321763     | 6       | 93.5      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321764     | 7       | 95.4      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321765     | 8       | 95.0      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321766     | 9       | 95.9      |
| 321761                 | 3           | 99      | 40    | 17       | 10       | 4.8     | 6.0        | 3.9         | 16.5      | 76        | 0.9     | 321767     | 10      | 95.7      |
| 321762                 | 4           | 99      | 42    | 18       | 10       | 4.9     | 6.0        | 4.8         | 17.2      | 72        | 0.9     | 321768     | 11      | 94.4      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321826     | 12      | 93.8      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321828     | 13      | 91.6      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321830     | 14      | 92.5      |
| 321817                 | 5           | 99      | 38    | 14       | 8        | 4.5     | 5.9        | 5.4         | 18.1      | 70        | 0.8     | 321833     | 15      | 96.0      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321836     | 17      | 95.4      |
|                        |             |         |       |          |          |         |            |             |           |           |         | 321837     | 18      | 95.0      |
| 321818                 | 6           | 100     | 40    | 16       | 9        | 5.3     | 6.2        | 4.5         | 17.5      | 74        | 0.9     | 321835     | 16      | 95.0      |

## Maine's AMPT Objectives

7

- To provide data to predict pavement performance in the State of Maine, for potential use in the following applications:
  - Pavement design (PavementME, FlexPave, etc.)
  - Performance-Related Specification (PRS) development
  - Performance-Engineered Mixture
     Design (PEMD)





#### Asphalt Mixture Performance Tester Series



Dynamic Modulus, Cyclic Fatigue, and Stress-Sweep Rutting

## AMPT Performance Test Methods

#### Modulus

- Axial compression dynamic modulus test (AASHTO T 378)
- Dynamic modulus mastercurve and time-temperature shift function

#### Cracking Resistance

- AMPT cyclic fatigue test (AASHTO TP 107)
- C vs. S (damage characteristic curve)
- Energy-based failure criterion
- Sapp cracking index parameter

#### Rutting Resistance

- Stress Sweep Rutting (SSR) test (spec under review by Asphalt Mixture and Construction ETG)
- Reduced load time and stress shift factors
- Shift model coefficients
- Permanent strain index parameter



### AMPT 38 mm Specimens



### AMPT 38 mm Specimens



#### How<sub>5</sub>

- Setting up "calibration" projects all over the state (4-5 per year)
  - Acquire samples of all materials in all lifts some to be tested and some to be retained indefinitely
  - Test all HMA lifts in the AMPT series
    - DM, CF, & SSR @ 5.0% air voids
    - DM @ 7.0% air voids
  - Will monitor performance for years
  - Will also build a library of different mixes across the state
- Target other projects for PRS or PEMD testing same mix design at different volumetrics

### **Proficiency Tests**

- First step = ensure that MaineDOT labs can perform the testing
- One large sample of plant produced mix was obtained from one truck
  - MaineDOT fabricated specimens and shipped to NCSU
  - The same mixture were tested at MaineDOT and at NCSU
  - The test results were compared

Dynamic Modulus Tests



Cyclic Fatigue Tests - Damage Characteristic Curve



Cyclic Fatigue Tests - Failure Criteria



#### Cyclic Fatigue Tests - Failure Criteria



### **PRS Shadow Project**

- Objective: Use AMPT predictive models to show the impact of volumetric changes
- 10 samples were acquired in the field from the same mix design on the same project
- Volumetric acceptance tests were performed on each
- Performance tests were conducted on 4 of the 10 samples at MaineDOT
- □ 3 samples were shipped to NCSU.

### Sample Volumetric Properties

|              | Sample<br>ID | Air Voids | VMA  | Gmb   | Gmm   | %<br>Binder | In-place<br>Density | Test<br>AV | Status   |
|--------------|--------------|-----------|------|-------|-------|-------------|---------------------|------------|----------|
| Maine<br>DOT | 352          | 4.7       | 15.5 | 2.426 | 2.546 | 5.3         | 96.5                | 7.5        | Done     |
|              | 355          | 4.4       | 15.9 | 2.412 | 2.524 | 5.2         | 94.6                | 2.5        | Done     |
|              | 360          | 3.9       | 16.8 | 2.404 | 2.502 | 5.9         | 92.5                | 2.5        | Done     |
|              | 361          | 4.7       | 17.3 | 2.391 | 2.509 | 5.9         | 92.9                | 7.5        | Done     |
| NCSU         | 353          | 4.5       | 16.4 | 2.406 | 2.519 | 5.5         | 96.0                | 4          | On-going |
|              | 358          | 4.6       | 16.4 | 2.402 | 2.518 | 5.3         | 95.4                | 4.6        | On-going |
|              | 362          | 4.4       | 17   | 2.396 | 2.507 | 5.8         | 94.3                | 5.7        | Done     |



#### Sample Volumetric Properties



### **Testing Results**





#### **Testing Results**

#### Cyclic Fatigue Tests





#### **Pavement Performance Prediction**



### **Fatigue Damage Prediction**



**ESALs** 

#### **Rutting Depth Prediction**



# Performance-Volumetric Relationship (PVR)

- The PVR was calibrated using the performance test results generated by MaineDOT.
- PVR was used to predict performance for mixes with different volumetric properties that were tested at NCSU for verification.

#### Verification of Cracking PVR

#### Fatigue damage in 4-inch asphalt pavement



### Verification of Rutting PVR

#### Rut depth of the AC layer in the 4 inch pavement



#### Fatigue Index Parameter

#### $\Box$ S<sub>app</sub>

- Fatigue resistance index
- Considers both modulus and ductility

| Traffic Level (million<br>ESALs) | S <sub>app</sub>                          | Tier               | Designation |
|----------------------------------|-------------------------------------------|--------------------|-------------|
| <= 3                             | $S_{app} \le 8$                           | Light              | L           |
| >3 and <=10                      | $S_{app} \le 8$<br>$8 \le S_{app} \le 18$ | Standard           | S           |
| >10 and <= 30                    | $18 < S_{app} <= 25$                      | Heavy              | Н           |
| >30                              | 25< S <sub>app</sub> <=30                 | Very Heavy         | V           |
| >30 and slow traffic             | S <sub>αpp</sub> >30                      | Extremely<br>Heavy | E           |

#### % Damage from FlexPAVE<sup>TM</sup> vs. Sapp



#### **PEMD** Concept

32



#### Performance-Engineered Mix Design



**Candidate Performance Optimum** 

#### Performance-Engineered Mix Design



**Candidate Performance Optimum** 

### Methodology

- □ 12.5 mm NMAS 75 gyration 20% RAP
- □ PG 64-28 binder (PPA modified <1%)
- Four different asphalt contents
  - Target 0.5% (5.1%)
  - Target (5.6%)
  - Target + 0.5% (6.1%)
  - Target + 1.0% (6.6%)

#### **Rutting Performance**



#### **Rutting Performance**



#### D<sup>R</sup> Failure Criterion and Modulus



38

#### Sapp as a Fatigue Cracking Index



### Fatigue Cracking Performance of Maine Mix Compared to Other Mixtures

40



### Rutting Performance of Maine Mix Compared to Other Mixtures





#### PEMD Lessons Learned - Overall

- Current mix design aim (5.6% AC) appears to optimize performance (fatigue cracking / rutting)
- Data acquired follows logical mix design trends
- Testing time for the PEMD approach is rather long, although it can be reduced
- Steep learning curve with AMPT testing although it does enhance fundamental understanding of mixes

### **AMPT Lessons Learned - Testing**

#### 43

- Cyclic fatigue Use bearing with top spacer plate for higher success rate. I suspect some of our failed test are due to stresses during bolt-up due to slightly non-parallel ends.
- Cyclic fatigue Allow 1.5hrs once bolted in AMPT to fully climatize prior to running the dynamic modulus fingerprint test (helps prevent unacceptable errors in the Dynamic Modulus Ratio between the dynamic modulus and cyclic fatigue data).
- Cyclic fatigue Be conservative when selecting the on-specimen strain rate, we had to decrease the on-specimen strain levels in order to stop end failures (failures outside the gauge points).
- Dynamic Modulus It isn't surprising if some of the quality indicators fall slightly outside of the acceptable range, especially at high temp.
- Tuning Take the time at the beginning to work with tuning to get appropriate PID values, defaults were significantly off.
- Coring If your small specimens are coming out slightly ribbed, try decreasing the water pressure feeding the drill.
- Equipment Suggestion to have 6 pairs of cyclic fatigue end plates and 72 Gauge Points (LVDT studs to be able to prepare specimens while climatizing and testing others to maximize efficiency).

#### **AMPT Lessons Learned**

#### Its all in the details...

- Sealing of samples after receipt
- Proper storage of samples
- Selection of air void content
- Use of CoreLok for air void determination
- Conditioning of samples

#### **Observations to Date**

- The proficiency test results showed MaineDOT was able to perform the AMPT tests and generate highquality data.
- The test results from the shadow mixes showed the test methods are able to predict the different pavement performance due to changes of AQC parameters.
- The performance-volumetric relationship was used to predict the pavement performance based on AQC data.
- The preliminary mix design and test confirmed the capacity of the mechanistic models and verified the original volumetric design of the mix.

# <sup>46</sup> Thank you for the opportunity.

#### Any Questions?

Derek Nener-Plante, M.S., PE Asphalt Pavement Engineer Derek.Nener-Plante@maine.gov 207-215-0849