# MTE Experiences with Performance Testing

Andrew Hanz, MTE Services Inc.

FHWA Mix ETG

Fall River, MA

May 9, 2018

## **Discussion Points**

- Overview
- Summary of Performance Test Efforts
  - -DCT Test
  - -SCB Test: I-FIT and Jc
- Challenges
  - -Standardization
  - -Implementation & Setting Limits
- Next Steps

## Performance Testing Experiences - MTE

- WI & MN: High recycle projects on state highways or county roads.
  - Internally developed specification that includes Hamburg, SCB, DCT.
- Iowa: Surface mixes and Interlayer
  - -State specifications for Hamburg and Beam Fatigue
- BMD Approach
  - -WI & MN: Tier 3. Volumetric requirements remain, mix expected to meet or exceed the performance of a conventional mix.
  - -lowa: State sets volumetric and performance test limits.

## Disc Shaped Compact Tension (DCT) Test

### **Thermal Cracking Resistance**





## Test Implementation - DCT Procedure and Specification

#### **Test Procedure**

- Temperature: LT PG + 10°C
- Aging: AASHTO R30 Short Term
  - Long term aging done for research.
- Air voids: Design + 3%
- Detailed procedures in place for conditioning time and duration samples can be held at low temps.

|                                            | · · · · ·                           |  |  |  |
|--------------------------------------------|-------------------------------------|--|--|--|
| Table DCT-                                 | 2                                   |  |  |  |
| Minimum Average Fracture Energy Mixture    |                                     |  |  |  |
| Production Requirements for Wearing Course |                                     |  |  |  |
| Traffic Level/PG Grade                     | Fracture Energy (J/m <sup>2</sup> ) |  |  |  |
| Traffic Level 2-3/PG XX-34                 | 400                                 |  |  |  |
| Traffic Level 4-5/PGXX-34                  | 450                                 |  |  |  |

**Specification** 

- Previous iterations included a min.
  fracture energy of 690 J/m<sup>2</sup>
- MTE draft specification compares to a conventional mix.

## Test Implementation – DCT Evaluation #1 – Effect of Mix Design Factors

#### **Factors Studied**

- Binder Replacement (RAP): 15%, 30%, 50%
- Aging: Short Term (4 hrs @ 135C), Long Term (12 hrs @ 135C)
- Polymer Modification: PG 58S-34, PG 58V-34

| Statistic | Peak Load<br>(kN) | Time at Peak<br>Load (secs) | Fracture<br>Energy (J/m <sup>2</sup> ) |  |
|-----------|-------------------|-----------------------------|----------------------------------------|--|
| Average   | 3.27              | 7.58                        | 542                                    |  |
| Range     | 0.23              | 0.38                        | 43                                     |  |
| Std Dev   | 0.08              | 0.15                        | 15.67                                  |  |
| COV       | 2.5%              | 2.0%                        | 2.9%                                   |  |

#### Results

#### **Recovered Binder Data**

| PBR                                   | PG 58-34 (LT<br>Continuous Grade -<br>34.9) |
|---------------------------------------|---------------------------------------------|
| 15                                    | -32.7                                       |
| 30                                    | -30.6                                       |
| 50                                    | -27.7                                       |
| Max Deviation from<br>Plan Grade (°C) | 6.3                                         |

Bahia et. al, WHRP 15-04 Study (3)

## Test Implementation – DCT Evaluation #1 – Effect of Mix Design Factors

| Factor              |                                                                    | <b>General Trend</b>                                     |                                                                                        |
|---------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|
| ractor              | Peak Load                                                          | Time to Peak Load                                        | Fracture Energy                                                                        |
| Increase PBR        | PG 58-28: No trend.<br>PG 58-34: No trend.                         | PG 58-28: Decrease (0.70s)<br>PG 58-34: Decrease (0.33s) | PG 58-28: Increase (31 J/m <sup>2</sup> )<br>PG 58-34: Decrease (42 J/m <sup>2</sup> ) |
| Increase Aging      | PG 58-28: Increase (0.06<br>kN)<br>PG 58-34: Decrease (0.05<br>kN) | PG 58-28: Decrease (0.15s)<br>PG 58-34: Decrease (0.37s) | PG 58-28: Decrease (48 J/m <sup>2</sup> )<br>PG 58-34: Decrease (14 J/m <sup>2</sup> ) |
| Use of Modification | PG 58-28: Increase (0.26<br>kN)<br>PG 58-34: Increase (0.08<br>kN) | PG 58-28: Decrease (0.60s)<br>PG 58-34: Decrease (0.11s) | PG 58-28: Decrease (24 J/m <sup>2</sup> )<br>PG 58-34: Decrease (28 J/m <sup>2</sup> ) |

**Highlight = Inconsistent Trend Between Binder Grades** 

Bahia et. al, WHRP 15-04 Study (3)

## Test Implementation – DCT Evaluation #2 – Aging and Aggregate Type



#### Granite

- LAR @ 500 = 18.3
- Fracture Energy (12 hr)
  = 551 J/m2



#### Limestone

- LAR @ 500 = 32.0
- Fracture Energy (12 hr) = 360 J/m2

- Factor driving fracture energy depends on aggregate type.
- Hard aggregate = Mastic Failure.
- Soft Aggregate = Coarse aggregate fracture.

Refer to TRB Paper by Braham (2001)

## Test Implementation – DCT Evaluation #2 – Aging and Aggregate Type



- Limestone Aggregate: LAR @
  500 = 32%
- Gravel Aggregate: LAR @ 500 = 15%
- All aging was loose mix at 135°C

## Test Implementation – DCT Evaluation #3 – MnDOT Report



## Test Implementation – DCT Observations and Discussion

- Recent discussion has suggested reducing fracture energy requirements from initial targets:
  - Benefits: Accommodates "soft" aggregates such as limestone.
  - Risks: If hard aggregate is used there is potential that an inferior mix (i.e. high binder replacement or low binder content) would still pass specification limit.
- Implications of changing/eliminating aggregate sources.
- **Recommended Action:** Universal limit is not feasible. Compare to mixes of known performance.

## SCB

### Intermediate Temperature Cracking Test

- Test Methods Evaluated
  - ASTM D8044: LSU Procedure, 3 notch depths, 0.5 mm/min loading rate.
  - AASTHO TP 124: I-FIT, one notch depth, 50 mm/min loading rate.
- Factors Evaluated: Binder Replacement, Polymer Modification, Aging



## SCB - LSU Adjusting for a Northern Climate

- Test temperature was adjusted to PG Inter. Temp to account for use of softer grades in WI.
- Three independent studies:
  - WisDOT High RAM Pilot Program (AAPT 2015)
  - WHRP Performance Testing Feasibility Project (2016)
  - WHRP Durability Project Bonaquist (2016 & 2016 AAPT Paper)
- Studies found the test was insensitive to the variables studied.
- Example of the localized development of these tests and potential complications in implementation.

## SCB – D8044 ILS 1424 – Phase 1

#### • Three samples:

| Steel Sample  |                    | Plastic Sample |                  | Plastic Sample w/notch |                  |
|---------------|--------------------|----------------|------------------|------------------------|------------------|
| Loading Rate  | 0.5mm/min          | Loading Rate   | 0.5mm/min        | Loading Rate           | 0.5mm/min        |
| Sampling Rate | 10/sec             | Sampling Rate  | 10/sec           | Sampling Rate          | 10/sec           |
| Load limit    | 500N, 1000N, 2500N | Load limit     | 1500N            | Load limit             | 1000N            |
| Gage Length   | 127mm (5")         | Gage Length    | 127mm (5")       | Gage Length            | 127mm (5")       |
| Temperature   | Room Temperature   | Temperature    | Room Temperature | Temperature            | Room Temperature |
| Pre-load      | 45± 10N            | Pre-load       | 45± 10N          | Pre-load               | 45± 10N          |

• 12 laboratories

## SCB – D8044 ILS 1424 – Phase 1

Results to date from 6 laboratories

• Testing Devices

1- AMPT

2 – Brovold

1 – Instron

- 1- IPC-Global
- 1 Instrotek
- Testing Fixtures
  - 7 fixed rollers
  - 3 rollers with springs
  - 1 36mm roller

| Material           | х_      | r-COV% | R-COV |
|--------------------|---------|--------|-------|
| Validator          | 300     | 24.3   | 57.0  |
| Plastic with notch | 58      | 26.6   | 102.1 |
| Plastic with notch | 111     | 45.5   | 122.7 |
|                    | average | 32.1   | 93.9  |

## SCB – D8044 ILS 1424 – Phase 1

### Results to date from 6 laboratories

- Testing Devices
  - 1- AMPT
  - 1- MTS
  - 2 Brovold
  - 1 Instron
  - 1- IPC-Global
  - 1 Instrotek
- Testing Fixtures
  - 7 fixed rollers
  - 3 rollers with springs
  - 1 36mm roller



## SCB-IFIT Initial Evaluations

- Benefits
  - Identifies mixes that are too stiff.
  - -Verifies design vs. production
  - Provides a relatively easy way to evaluate mix composition.
- Concerns
  - Repeatability
  - Polymer modification (Discussed in Fall 2017 meeting)
  - -Aging
  - -Refining limits.

## SCB - IFIT RAP/RAS Content & Volumetrics

| Mix    | AB  | %AV at | ТЛЛА  | VEA  | RC  | CYAB ( | %)    |      | ABR  |       |
|--------|-----|--------|-------|------|-----|--------|-------|------|------|-------|
| Design | (%) | Ndes   | VIVIA | VFA  | RAP | RAS    | Total | RAP  | RAS  | Total |
| N50    | 5.8 | 3.6    | 15.1  | 73.5 | 1.2 | 0.8    | 2.00  | 20.3 | 14.0 | 34.3  |
| N70    | 5.9 | 3.5    | 15.3  | 73.9 | 0.6 | 0.0    | 0.6   | 9.6  | 0    | 9.6   |

### Differences

- Aggregate structure
- Recycled products and ABR values for mix designs:
  - N50 has 34% PBR, 40% of the binder replacement is from RAS.

## SCB I-FIT Effect of PBR - Flexibility Index



## SCB I-Fit Potential Benefits to Monitor Production

| Factors                | Levels                               |  |  |  |
|------------------------|--------------------------------------|--|--|--|
| Mix Design Variables   |                                      |  |  |  |
| Aggregate Source:      | Granite, Gravel, Limestone           |  |  |  |
| Mix Traffic Level      | Medium Traffic and High Traffic      |  |  |  |
| Production Variables   |                                      |  |  |  |
| Asphalt Binder Content | Design – 0.3%, Design, Design + 0.3% |  |  |  |
| P200 Content           | Design -2%, Design, Design + 2%      |  |  |  |

## SCB I-Fit Potential Benefits to Monitor Production

| Factors                | Flexibility Index |      | Post-Peak Slope |      | Fracture Energy |      |
|------------------------|-------------------|------|-----------------|------|-----------------|------|
| Mix Type/Modification  | P-value           | Sig? | P-Value         | Sig? | P-value         | Sig? |
| Aggregate Source       | <0.001            | Yes  | <0.001          | Yes  | 0.054           | No   |
| Asphalt Binder Content | 0.001             | Yes  | 0.176           | No   | <0.001          | Yes  |
| P200 Content           | 0.124             | No   | 0.475           | No   | 0.001           | Yes  |

• Results presented for HT-V-28 mix, similar for medium traffic unmodified design.

## SCB I-FIT Concerns Repeatability – Single Lab





Four replicates tested for all mixes.

## SCB I-FIT Concerns Aging



- Is Flexibility Index a discriminating property on long term aged samples?
- Data represents ~12 designs. 4% AV and 3.0% Regressed AV contents.

## SCB IFIT Concerns Effects of Loading Rate and Aging



• After aging Flexibility Index values collapse due to stiffness effect.

## Challenges Standardization

- HMA acceptance based on volumetrics causes plenty of disputes due to multi-lab variability and differing practices.
- Adoption of even simple performance tests introduces more complexity.
- Have been successful in generating test procedures.
  - Need to understand precision and bias, ruggedness, etc.
- Assign testing responsibility and at what point in the process it will occur.

## Challenges Implementation Approach and Value Added



- 1. Maintaining current specifications and adding performance test requirements.
  - a. Pro: Good for initial data gathering.
  - b. Cons: Limited flexibility for mix adjustments.

### **Long Term Outcomes**

Change in specifications based on initial performance test results.

Or

BMD Approach #2: Relax volumetric criteria and add performance test requirements.

## Challenges One Size Does Not Fit All – Setting Limits

### Dense Graded Mixes

- -Surface Layers vs. Lower Layers
- Mix Traffic Level
- Should effects of load/moisture be combined?

### Specialty Mixes

-Interlayer, Thinlay, SMA

### • Example

- -Flexibility Index = 7.0 (Dense Graded Mix) or 20.0 (SMA).
- Different Tests may be better suited for different applications.



## Next Steps Quality Assessment - Gaps

### Moisture Damage

- Combined with Rutting by using wet Hamburg with very high # of passes.
- Is specification promoting dry/stiff mixes?
- Should effects of load/moisture be combined?

### Aging/Durability

- Significant debate on which aging method to use and aging binder or mix.
- Many index cracking tests have not been developed at the levels of aging currently under consideration.
- Interim solution? Binder properties (i.e. ΔTc, G-R) have shown good correlation to field performance.

## Remarks/Discussion Points

- There are benefits to single loading rate/single temperature tests, but they cannot solve all problems.
  - Evaluates the mix as a system & Provides a control for mix stiffness.
- A solution for aging resistance is still a major research need. – Accelerated load correlations indicate load associated cracking.
- States are looking for guidance on how to incorporate these tests into practice.

# Thank You!

Andrew Hanz, Ph.D. Technical Director MTE Services Inc. andrew.hanz@mteservices.com

## References

- 1. Braham, A., Buttlar, W. G. & Marasteanu, M., 2007. Effect of Binder Type, Aggregate, and Mixture Composition on Fracture Energy of Hot-Mix Asphalt in Cold Climates. *Transportation Reserach Record, Journal of the Transportation Research Board*, Volume 2001, pp. 102-109.
- 2. Johanneck, L. et al., 2015. *DCT Low Temperature Fracture Testing Pilot Project,* St. Paul Minnesota: Minnesota Department of Transportation.
- 3. Bahia, et. al, "Analysis and Feasibility of Asphalt Pavement Performance Based Specifications for WisDOT". Wisconsin Highway Research Program Proj. 0092-15-04. December 2016.
- 4. Mandal, T., Hanz, A. Bahia, H., "Challenges in using the DCT test to Determine the Role of Asphalt Mix Design Variables in Cracking Resistance at Low Temperatures." International Journal of Engineering, Taylor & Francis 2017. ISSN: 1029-8436.

## References

- Hanz, A., Dukatz, E., Reinke, G., "Use of Performance-Based Testing for High RAP Mix Design and Production. Journal of Road Materials and Pavement Design, Volume 18: Papers from 91<sup>st</sup> AAPT Meeting, 2017.
- 6. Bonaquist, R., Paye, B., Johnson, C. "Application of Interdmediate Temperature SCB Test Results to Design Mixtures with Improved Load Associated Cracking Resistance.: AAPT Meeting 2017.
- 7. Bonaquist, Critical Factors Affect.ing Asphalt Concrete Durability. Wisconsin Highway Research Program Report 0092-14-06, WisDOT, 2016
- 8. Mandal, T., Hanz, A. Bahia, H., "Challenges in using the DCT test to Determine the Role of Asphalt Mix Design Variables in Cracking Resistance at Low Temperatures." International Journal of Engineering, Taylor & Francis 2017. ISSN: 1029-8436.