FHWA ALF Update & Performance Testing

May 2018, ETG

Sean (Xinjun) Li Jack Youtcheff

SES/TFHRC-FHWA

ALF Density Study

- Laboratory performance testing
- ALF field testing

ALF RAP/RAS Study

- 20% & 40% RBR + additional virgin binder
- Performance testing
- Stress Sweep Rutting Testing with Small Specimen

AC Field Density and CAB Geosynthetic Reinforcement

Objectives

Investigation of Asphalt Concrete Compaction and Its Impact on Performance of Pavements Built with and without Geosynthetic Base Reinforcement

The Experiment

- One AC mixture
- Four Lanes (<u>4 different AC compaction levels</u>)
 - □ High (>92% compaction)
 - Medium (90-92%)
 - □ Low (< 90%)
- Two structures per lane
 - Unreinforced
 - Reinforced with a Standard BS-1200
- Performance measures
 - Cracking
 - Rutting

Pavement Structure

No Reinforcement

With Reinforcement

U.S. Department of Transportation Federal HighwayAdministration

Air voids of field cores (cont'd)

Air Voids of Field Cores

Lane	SSD	Whole	SSD E Trim	Bottom Imed	CoreLo	k Whole	CoreLok Bottom Trimmed		
	Ave.	St. Dev.	Ave.	St. Dev.	Ave.	St. Dev.	Ave.	St. Dev.	
L9 (Low)	10.6	0.8	10.2	0.8	11.93	0.6	<u>11.1</u>	0.8	
L10 (Mid)	8.6	1.2	8.3	1.1	9.9	1.2	<u>9.3</u>	1.1	
L11 (High)	7.9	0.7	7.7	0.7	8.8	0.8	<u>8.6</u>	1.1	
L12 (High)	7.1	0.9	6.8	1.0	7.7	1.3	<u>7.3</u>	1.1	

Loading Specs

Rutting

- Terminal state: 1.5 to 2 inches of total permanent deformation
- Loading temperature:
 - Variable temperature:
 - 10K passes at 40°C
 - 10K passes at 50°C
 - Cycle until terminal state is reached

Loading Specs (Cont'd)

Cracking

Loading temperature: 20°C

- □ Terminal state: total cracking length > 1,000 inches
 - Early stages of cracking in which preventive maintenance would be optimum intervention in real pavements

Layout and Current Status

- F_i Fatigue test at aged conditions
- Completed Rutting
 - All but L12S2
- Completed Cracking
 - L9S2
 - L11S4
 - L12S3
- Next (until end of loading season):
 - L10S1
 - L12S2

2016 0 day

Loose Mix Laboratory Testing

- HWTD testing
 Dry 50°C + wet 50°C
- Flow number
- Dynamic modulus
- Axial cyclic fatigue test
- Stress sweep rutting test
 - 4 air voids (7%, 8%, 9%, 11%)
 - 2-hour aging
 - □ 2 LTOA (5-day 85°C, 7-day 95°C)

HWDT

U.S. Department of Transportation Federal HighwayAdministration

Lane and Va	Flow Number (cycles)
L12 (7%Va)	232
L11 (8%Va)	93
L10 (9%Va)	109
L9 (11%Va)	73

U.S. Department of transportation Federal HighwayAdministration

Effect of Air Voids on | E* |

- (00)	Correction Factor from Each Method							
Temperature (°C)	Witczak Model	Hirsch Model	Lab Data					
4.4	6.0%	3.9%	6.1%					
21.1	6.2%	6.5%	7.1%					
37.8	N/A	N/A	8.4%					
54.4	6.8%	1.3%	9.6%					

U.S. Department of Transportation Federal HighwayAdmInistration

Aging Effect on | E*|

Frequency and Temperature

Aging Effect on | E*|

Aging Effect on | E*|

Frequency and Temperature

Stress Sweep Rutting Testing

20°C

54°C

Fatigue Testing Results

Axial cyclic fatigue (AASHTO TP107)

fatigue characteristics

Parameters	L9 (11% Va)	L11 (8% Va)	L12 (7% Va)		
C11	0.002	0.002	0.001		
C12	0.530	0.533	0.540		
DR	0.496	0.477	0.493		

$$C = 1 - C_{11} \cdot S^{C_{12}}$$

$$D^R = \frac{\int_0^{N_f} (1 - C) dN}{N_f}$$

U.S. Department of Transportation Federal HighwayAdmInistration

RAP Mix + More Virgin Binder ALF RBR Study

Objectives

- Examine the effect of asphalt binder replacement in the asphalt mixtures containing RAP
- Determine how much virgin binder needs to be added for the mixes to exhibit equivalent performance
- Improve RAP mix design to ensure satisfactory performance

Materials and Testing

Materials

- L1 (0% RBR, control mix, PG 64-22)
- L6 (20% RBR, PG 64-22)
- L5 (40% RBR, PG 64-22)
- L8 (40% RBR, PG 58-28)

Additional Binder

□ +0.25%, +0.5%, +0.75%

Testing

- Dynamic modulus
- Direct tension fatigue (AASHTO TP 107)
- Stress sweep rutting (SSR)

Dimension (mm)	Sieve Size	Lane 1 (0%RBR)	Lane 6 (20%RBR)	Lane 5 (40%RBR)		
19	3/4 inch	100	100	100		
12.5	1/2 inch	98.3	98.0	97.1		
9.5	3/8 inch	86.2	85.8	80.6		
4.75	#4	47.6	44.6	37.9		
2.36	# 8	28.8	28.1	24.0		
1.18	# 16	20.1	20.6	18.6		
0.6	# 30	15.0	15.7	14.9		
0.3	# 50	11.0	11.7	11.6		
0.15	# 100	7.8	8.5	8.9		
0.075	#200	5.3	5.8	6.3		

(Sieve Size mm)^0.45

	L1 (0%RBR)			L6 (20%RBR)			L5 (40%RBR)				L8 (40%RBR PG58-28)				
+ AC	+0	+0.25%	+0.5%	+0.75%	+0	+0.25%	+0.5%	+0.75%	+0	+0.25%	+0.5%	+0.75%	+0	+0.25%	+0.5%
G _{mm}	2.747	2.735	2.723	2.711	2.744	2.732	2.72	2.708	2.744	2.732	2.72	2.708	2.715	2.705	2.693
Air Voids	4.93	4.14	3.13	1.89	4.21	3.4	2.58	1.86	4.38	3.6	2.89	2.31	3.99	3	2.01
G _{mb}	2.612	2.622	2.638	2.66	2.629	2.64	2.65	2.658	2.624	2.632	2.641	2.645	2.619	2.623	2.639
Pb	5.14	5.39	5.64	5.89	4.92	5.17	5.42	5.67	4.62	4.87	5.12	5.37	5.02	5.27	5.52
P _{be}	4.63	4.89	5.14	5.39	4.30	4.55	4.80	5.05	4.20	4.45	4.70	4.95	4.71	4.96	5.21
VMA	16.8	16.7	16.4	15.9	15.3	15.1	15.0	15.0	15.2	15.1	15.1	15.2	15.7	15.8	15.5
VFA	70.6	75.1	80.9	88.1	72.4	77.5	82.8	87.6	71.1	76.2	80.8	84.8	74.5	81.0	87.0
% dust	5.3	5.3	5.3	5.3	5.8	5.8	5.8	5.8	6.3	6.3	6.3	6.3	5.7	5.7	5.7
DB Ratio	1.14	1.08	1.03	0.98	1.35	1.28	1.21	1.15	1.50	1.42	1.34	1.27	1.21	1.15	1.09

Volumetrics

Dynamic Modulus

U.S. Department of Transportation Federal HighwayAdministration

Stress Sweep Rutting Results

U.S. Department of Transportation Federal HighwayAdmInistration

Fatigue Testing Results

Under Analysis

Stress Sweep Rutting Testing with Small Geometry Specimen

AMPT Performance Tests

- **TFHRC using AMPT/SPT for 14 years**
- Dynamic modulus test

full size + small size specimens

- Axial direction tension cyclic fatigue test
 full size + small size specimens
- Direct tension monotonic test

Small size specimens

- Stress sweep rutting test
 full size + small size specimens
- Flow number test

Stress Sweep Rutting Test

- One loose mix (PG 64E-34)
- Three air voids
 - □ 5%, 7% and 9%
- Three temperatures
 - □ 20°C, 51°C, 45°C
- Two geometry
 - 38mm x 110mm
 - 🗅 100mm x 150mm

U.S. Department of transportation Federal HighwayAdministration

U.S. Department of Transportation Federal HighwayAdmInistration

Effect of air voids

38mm vs. 100mm

Small specimen

Full size specimen

U.S. Department of Transportation Federal HighwayAdministration

Effect of geometry

□ 38mm vs. 100mm

20C+5%Va

51C+5%Va

U.S. Department of transportation Federal HighwayAdministration

Effect of geometry

38mm vs. 100mm

20C+9%Va

45C+9%Va

U.S. Department of Transportation Federal HighwayAdministration

Thank You! + Questions?