AASHTO TP 107: AMPT Cyclic Fatigue

Proposed Revisions

Y. Richard Kim, Sonja Pape
NC State University
Dave Mensching, Amir Golalipour
FHWA Office of
Asset Management, Pavement, and Construction

Presented to the Asphalt Mixture ETG
Fall River, MA

September 14, 2016
Specifically for the AMPT

- Figures updated for the AMPT
- Sample preparation and test setup information updated to be clearer for AMPT users
- Removed Appendix X7 (strain selection to target specific N_f) from 2014 version to alleviate confusion on strain selection
 - Specific N_f is not as important as range of N_f for this process
Example of Updated Figures

New Version
- Top Plate
- Axial Specimen
- Deformation Sensors
- Bottom Plate
- Load Cell
- Actuator

2014 Version
- Top Plate
- Load Cell
- LVDTS
- Axial Specimen
- Bottom Plate
New Strain Selection Appendix

- Family of curves method
- Allows simpler estimation of AMPT input “target on-specimen strain”
- Run initial test at a strain specified by fingerprint dynamic modulus
- Use included table to reach an approximate N_f for subsequent specimens
Strain Selection Procedure

Case (units in MPa)	ε_{os}					
8,800 <	E*	_{fingerprint}	300	-	-	-
4,400 <	E*	_{fingerprint} < 8,800	500	-	-	-
	E*	_{fingerprint} < 4,400	800	-	-	-

1. |E*|_{fingerprint} = 7,500 MPa
2. ε_{os1} = 500 με
3. N_f1 = 4,900 cycles
4. ε_{os2} = 450 με
5. ε_{os3} = 550 με
6. ε_{os4} = 400 με

If 8,800 > |E*|_{fingerprint} > 4,400 MPa, select 500 microstrain as the first specimen's strain

<table>
<thead>
<tr>
<th>Target Microstrain</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td></td>
<td>145,856</td>
<td>314,972</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>31,468</td>
<td>77,539</td>
<td>179,856</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>8,605</td>
<td>23,704</td>
<td>60,744</td>
<td>144,799</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,039</td>
<td>2,798</td>
<td>8,491</td>
<td>23,721</td>
<td>61,010</td>
<td>144,466</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,433</td>
<td>1,039</td>
<td>3,433</td>
<td>10,350</td>
<td>28,465</td>
<td>71,421</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>428</td>
<td>1,527</td>
<td>4,929</td>
<td>14,392</td>
<td>38,032</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,527</td>
<td>-</td>
<td>734</td>
<td>2,519</td>
<td>7,766</td>
<td>21,507</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,929</td>
<td>-</td>
<td>-</td>
<td>1,365</td>
<td>4,422</td>
<td>12,781</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,392</td>
<td>-</td>
<td>-</td>
<td>777</td>
<td>2,634</td>
<td>7,919</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clarified Number of Specimens

- Material Ranking or Index Property
 - Minimum of 3 strain levels

- Pavement Performance Analysis
 - Minimum of 4 strain levels
 - Better extrapolation of G^R vs. N_f curve in log-log scale
Platen Size & Gluing Jig

- Platens - Changed the size limits
 - Old: 100 ± 0.5 mm
 - New: 100 < x < 105 mm
 With a recommendation for diameters closer to the sample diameter to improve alignment

- Gluing Jigs - Allowed for gluing jigs to hold a small weight (no greater than 10 lbs) on the sample without holding a fixed height
Ball Joint vs. Ball Bearings

- The "ball joint" language caused confusion
 - Only meant for non-AMPT machines
 - Is now removed in AMPT-specific standard
- Some users placed a "ball bearing" between the upper platen and the machine.
- Ball bearing is not recommended because there is a potential to tighten the upper platen unevenly and damage the sample.
Terminology and Calculations

- Added calculations for the energy based failure criteria (G^R)
 - Also required for the report
- Added dynamic modulus ratio (DMR) to terminology
- Added tensile strain-based fatigue model coefficients (K_1, K_2, K_3) to terminology
Calculating Alpha Value

- Changed the method to calculate the α term to a simpler and more stable method based on the tangential slope of $E(t)$ vs. time in log-log scale.
Small Specimen Testing

- Added appendix to include small specimen testing possibility
 - Mirrors AASHTO TP 79-15
- Open doors to testing field cores and more specimens from one gyratory specimen
THANK YOU

- Due date for comments: September 25th
- Comments sent to Dave Mensching (FHWA): david.mensinghing@dot.gov