RAP/RAS Team Update

Jim Musselman
Florida DOT
TEAM MEMBERS

- John D’Angelo
- Gerry Huber
- Ron Sines
- Randy West
- Richard Willis
- Tim Ramirez
- Audrey Copeland

- Danny Gierhart
- Hassan Tabatabaee
- Lee Gallivan
- Tim Aschenbrener
- Jim Musselman
- Tanya Nash
ADDITIONAL SUPPORT

• Tom Bennert
• Gerry Reinke
• Mike Anderson
• Pamela Turner
• Geoff Rowe
Two Main Issues

• How much of the RAS binder becomes effective asphalt binder?
 – Quantity of binder

• How to address the stiffness/brittleness of the RAS binder?
 – Quality of binder
Existing Approach (PP 78-14)

- **Binder quantity:**
 - Uses RAS Binder Availability Factor of 0.70 – 0.85

- **Binder quality:**
 - Uses Binder Grade Adjustment Guidelines:
 - Uses Binder Grade Adjustment Guidelines:

<table>
<thead>
<tr>
<th>Recommended Virgin Asphalt Binder Grade</th>
<th>RAS or RAS + RAP Binder Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td><15</td>
</tr>
<tr>
<td>One grade softer</td>
<td>15 to 25</td>
</tr>
<tr>
<td>Use blending charts</td>
<td>>25</td>
</tr>
</tbody>
</table>
Quantity of Binder

- Raise minimum VMA by 0.1% for every 1% RAS (by weight of total aggregate).
 - Based on assumption of 70% binder availability
 - Will increase effective binder in the mix to offset for the potential for non-effective binder on the RAS
- Simple way of addressing binder availability
 - More binder → Improved durability
 - Angular aggregate and stiffer binder in RAS → Minimal risk of rutting
Quality of Binder

- Focus on critical low temperature difference of the binder - ΔT_c
 - $\Delta T_c = $ Stiffness critical temp (S) – the Relaxation critical temp (m-value)
- Measured with the Bending Beam Rheometer (BBR)
- Criteria: ΔT_c for the blended binder should be greater than or equal to -5.0°C
 - Binder is PAV aged for 40 hours
Two Approaches

1. Binder Blending Procedure

- Agency sets allowable RAS tiers;
- Extract, recover, blend typical materials (RAS, RAP, base binder, etc.) at varying percentages
 - RASBR = 0.00, 0.15, 0.30
- PAV age the blended binder for 40 hours
- Test the blended binders to determine ΔT_c
- Set the allowable tiers based on the criteria that ΔT_c must be greater than or equal to -5.0°C, and the appropriate PG grade is met.
Two Approaches

2. Mixture Extraction Procedure
 – Individual mixes are fabricated, extracted, the binder recovered and then PAV aged for 40 hours
 – The recovered binder is tested to determine ΔT_c
 – ΔT_c must be greater than or equal to -5.0°C, and the appropriate PG grade is met
Default Options

- A mixture performance test for cracking implemented by the State is acceptable in lieu of the binder testing for ΔT_c

- Default value option – a maximum RASBR can be used in lieu of testing
 - $\text{RASBR} \leq 0.10$
Mixture Extraction Procedure

- Individual mixes are fabricated
- Loose mix is conditioned at 135°C for 24 hours
 - Uncovered pan at a depth of 25 to 50 mm placed in a forced-draft oven with no stirring
- Mix is then extracted, the binder recovered
- The recovered binder is tested to determine ΔT_c
 - ΔT_c must be greater than or equal to -5.0°C, and the appropriate PG grade must be met
Summary

• Revised PP 78
• Increased minimum VMA to address issue of binder quantity
• Used ΔT_c to address binder quality
 – Recovered binder is PAV aged for 40 hours
 – Criteria: $\Delta T_c \geq -5.0^\circ C$
• Added loose mix aging (135°C for 24 hours) as an alternate in the appendix
 – Criteria: $\Delta T_c \geq -5.0^\circ C$
Action Items

• Revised PP 78 sent out to ETG for review
 – A few typos need to be corrected
• Need ETG green light
 – Forward to AASHTO TS 2d
• Declare victory – for now...
• Need to get a new Task Team Chair
Thank You!