NCHRP 9-49A Project
Performance of WMA Technologies:
Stage II – Long-term Field Performance

FHWA Mix ETG

Oklahoma City, OK
September 17, 2015
Project Background

- Duration: 04/2011-07/2016

- Team Members
 - Haifang Wen - Washington State University (Prime)
 - Louay Mohammad - Louisiana State University
 - Shihui Shen - Penn State University at Altoona
 - Braun Intertech
 - Bloom Companies
Outline

- Objectives & Research Progress
- Preliminary Findings
 - Transverse Cracking
 - Top-down Longitudinal Cracking
 - Rutting & Moisture Susceptibility
 - Effects of WMA on construction practices
 - Material Property Changes Over Time
 - MT I-15 Project
 - TN SR 125 Project
 - IA US 34 Project
- Summary and Future Work
Research Objectives

- To identify the material and engineering properties of WMA pavements that are *significant determinants* of their long-term field performance, and

- To recommend *best practices* for the use of WMA technologies.
Research Progress

Phase I
- Task 1: Selection of WMA Candidate Projects
- Task 2: Design of Experiment

Phase II
- Task 3: Field Characterization of WMA Projects
- Task 4: Lab Characterization of WMA/HMA Specimens
- Task 5: Analysis of Experimental Data in the Field
- Task 6: Identification of Significant Determinants of Field Performance

Phase III
- Task 7: Final Report Preparation and Recommendation for Best Practice and Revision of AASHTO Specifications and Test Methods
New (2011 Construction) Pavement Projects

- 5 Projects = 10 HMA-WMA pairs
- 1st round: pre-overlay distress survey, construction monitoring, on-site sample compaction, field cores, and falling weight deflectometer tests
- 2nd round: field cores and distress survey
In-service (as of 2011) Pavement Projects

• 22 field projects + 1 HVS = 40 HMA-WMA pairs
• 1st round: distress survey, field cores and falling weight deflectometer tests
• 2nd round: distress survey
Projects Distribution

- Organic WMA Technology
- Chemical WMA Technology
- Foaming WMA Technology

- <3M Traffic (ESALs)
- >=3M Traffic (ESALs)

- [4,5) Age, Years
- [6,7) Age, Years
- [8,10) Age, Years

- Flexible Pavement Structure
- PCC/Cement Stabilized Pavement Structure
<table>
<thead>
<tr>
<th>Project</th>
<th>MT I-15</th>
<th>TN SR 125</th>
<th>IA US 34</th>
<th>TX FM 973</th>
<th>LA US 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Year</td>
<td>2011</td>
<td>2011</td>
<td>2011</td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>Warm Mix</td>
<td>Sasobit, Evotherm DAT, Foaming</td>
<td>Evotherm 3G</td>
<td>Sasobit, Evotherm 3G</td>
<td>Evotherm 3G, Foaming</td>
<td>Sasobit, Evotherm 3G</td>
</tr>
<tr>
<td>Design Thickness, in.</td>
<td>2.5</td>
<td>1.25</td>
<td>1.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Traffic</td>
<td>3 million (3,170 AADT, 26.3% truck)</td>
<td>0.39 million (3,470 AADT, 13% truck)</td>
<td>3 million (6,450 AADT, 10.9% truck)</td>
<td>3 million (11,300 AADT, 4.3% truck)</td>
<td>9 million (34,138 ADT, 14% truck)</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Siliceous</td>
<td>Gravel & Sand</td>
<td>Limestone, Quartzite & Sand</td>
<td>Gravel, Limestone & Dolomite</td>
<td>Granite & Limestone</td>
</tr>
<tr>
<td>NMAS, in.</td>
<td>3/4</td>
<td>1/2</td>
<td>1/2</td>
<td>3/4</td>
<td>1/2</td>
</tr>
<tr>
<td>Asphalt Binder</td>
<td>PG 70-28</td>
<td>PG 70-22</td>
<td>PG 58-28</td>
<td>PG 70-22</td>
<td>PG 76-22</td>
</tr>
<tr>
<td>Anti-stripping Agent</td>
<td>Hydrated Lime, 1.4%</td>
<td>AZZ-MAZ, 0.3%</td>
<td>None</td>
<td>None</td>
<td>0.6%</td>
</tr>
<tr>
<td>Polymer-modified</td>
<td>SBS</td>
<td>Yes</td>
<td>None</td>
<td>N/A</td>
<td>SBS</td>
</tr>
<tr>
<td>Asphalt Content, %</td>
<td>4.6</td>
<td>6.0</td>
<td>5.44</td>
<td>5.2</td>
<td>4.7</td>
</tr>
<tr>
<td>G_{mm}</td>
<td>HMA (2.458) Sas (2.466) Evo (2.459) Foam (2.453)</td>
<td>HMA (2.352) Evotherm (2.355)</td>
<td>HMA (2.423) Sasobit (2.428) Evotherm (2.429)</td>
<td>HMA (2.406) Evotherm (2.405) Foaming (2.420)</td>
<td>HMA (2.464) Sasobit (2.468) Evotherm (2.464)</td>
</tr>
<tr>
<td>RAP or RAS</td>
<td>None</td>
<td>10% RAP</td>
<td>17% RAP</td>
<td>None</td>
<td>15% RAP</td>
</tr>
<tr>
<td>Structure</td>
<td>2.5" overlay + 7" existing HMA + 16.2" base (non-stabilized) + infinite subgrade</td>
<td>1.25" overlay + 8" bituminous base + 6" min. aggregate base + infinite subgrade</td>
<td>HMA & Sasobit: 1.5"overlay + 5" existing HMA + 7" PCC + subgrade Evotherm: 1.5" overlay + 3" existing HMA + 9" PCC + subgrade</td>
<td>2" overlay + 8" existing HMA + 10" base + 141.1" subgrade (lean clay)</td>
<td>2" overlay + 8" existing HMA + 8" PCC + 6" cement treated soil subgrade</td>
</tr>
<tr>
<td>Wet Freeze Zone</td>
<td>MD 925</td>
<td>MO Hall St.</td>
<td>MO Rte. CC</td>
<td>MN TH 169</td>
<td>OH SR 541</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Warm Mix (content, %, by weight of binder)</td>
<td>Sasobit (1.5%); Evo ET; Asph (0.3%)</td>
<td>Sasobit (1.5%); Evo ET (5.3%); Asp (0.3%)</td>
<td>LEA, Gencor (0.5%)</td>
<td>Astec DBG</td>
<td>Astec DBG</td>
</tr>
<tr>
<td>Production Temp., °F</td>
<td>HMA (310-350); Sasobit (270-310)</td>
<td>HMA (320), Sas (240); Evo (225); Aspha (275)</td>
<td>HMA (320); Evo (280-290)</td>
<td>HMA (320), Sas (260); Evo (235); Asp (245)</td>
<td>H (290-310); Gen (250-265); LEA (240-260)</td>
</tr>
<tr>
<td>Traffic (AADT)</td>
<td>10,480</td>
<td>21,000</td>
<td>8618</td>
<td>12,600</td>
<td>650</td>
</tr>
<tr>
<td>Aggregate</td>
<td>N/A</td>
<td>Limestone</td>
<td>Steel Slag</td>
<td>N/A</td>
<td>Limestone</td>
</tr>
<tr>
<td>NMAS, in.</td>
<td>3/8</td>
<td>1/2</td>
<td>1/2</td>
<td>3/4</td>
<td>3/8</td>
</tr>
<tr>
<td>Asphalt Binder</td>
<td>64-22</td>
<td>70-22</td>
<td>64-22</td>
<td>58-28</td>
<td>70-22</td>
</tr>
<tr>
<td>Anti-stripping Agent</td>
<td>None</td>
<td>ARR MAZ, 0.25%</td>
<td>Pave Bond Lite, 0.25%</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Asphalt Content, %</td>
<td>5.0</td>
<td>5.3</td>
<td>5.4</td>
<td>4.2</td>
<td>6.1</td>
</tr>
<tr>
<td>G_{mm}</td>
<td>2.519</td>
<td>2.451</td>
<td>2.469</td>
<td>2.549</td>
<td>2.429</td>
</tr>
<tr>
<td>Sampling Date</td>
<td>6/28/12</td>
<td>7/16-18/12</td>
<td>7/17/12</td>
<td>8/28/12</td>
<td>6/18/12</td>
</tr>
<tr>
<td>RAP</td>
<td>15%</td>
<td>10%</td>
<td>20%</td>
<td>N/A</td>
<td>15%</td>
</tr>
<tr>
<td>Structure</td>
<td>2"+5" HMA + 8"Macadam stone</td>
<td>1.75"+12" PCC + 0-3" base</td>
<td>3.75"+7" PCC + 6" base</td>
<td>2"+8" HMA + 6" base</td>
<td>1.25"+6.75" HMA+9" Granular Base</td>
</tr>
<tr>
<td>Wet No-Freeze</td>
<td>SC US 178</td>
<td>TN SR 46</td>
<td>TX FM 324</td>
<td>LA 116</td>
<td>LA 3191</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Warm Mix</td>
<td>Evotherm DAT</td>
<td>Sasobit, Evotherm DAT, Astec DBG, and Advera</td>
<td>Sasobit, Evotherm DAT, Rediset, Advera</td>
<td>Foam</td>
<td>Astec Foam</td>
</tr>
<tr>
<td>Production Temp., °F</td>
<td>HMA (295), Evotherm (240)</td>
<td>HMA Danley (320-350); HMA Franklin (320-350), Sasobit (250); Evotherm DAT (240); Advera (250); DBG (260)</td>
<td>H (330)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Traffic (AADT)</td>
<td>3880</td>
<td>4440</td>
<td>1450</td>
<td>2600</td>
<td>ADT 200</td>
</tr>
<tr>
<td>Aggregate</td>
<td>N/A</td>
<td>Limestone</td>
<td>Limestone</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NMAS, in.</td>
<td>3/8</td>
<td>1/2</td>
<td>3/8</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Asphalt Binder</td>
<td>64-22</td>
<td>70-22</td>
<td>64-22</td>
<td>70-22</td>
<td>70-22</td>
</tr>
<tr>
<td>Anti-stripping Agent</td>
<td>N/A</td>
<td>Franklin (AD-Here 77-00, 0.3%); Astec DBG (Pavegrip 650, 0.3%)</td>
<td>1% Lime</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Asphalt Content, %</td>
<td>H (5.3), W (5.4)</td>
<td>5.3</td>
<td>4.6</td>
<td>4.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Gmm</td>
<td>H (2.460), W (2.463)</td>
<td>HMA Danley (2.428), Sasobit (2.411), Evotherm (2.410), Astec DBG (2.444), Advera (2.422) HMA Franklin (2.425)</td>
<td>HMA, Sas, Evo (2.508) Adv, Rediset (2.498)</td>
<td>H (2.525) W (2.541)</td>
<td>H (2.453) W (2.486)</td>
</tr>
<tr>
<td>Sampling Date</td>
<td>07/27/12</td>
<td>07/24/12</td>
<td>2/6-8/13</td>
<td>05/21/13</td>
<td>05/21/13</td>
</tr>
<tr>
<td>RAP</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Structure</td>
<td>2" overlay + 5.7" HMA + 7.1" PCC + Sand Clay Base</td>
<td>1.25" Overlay + 4.26" HMA + 6" crushed stone</td>
<td>1.5" Overlay + 5.7" HMA + 10" base</td>
<td>1.5" Overlay + 5" HMA +8.5" Base</td>
<td>2" HMA + 6" HMA+ 7" PCCP</td>
</tr>
<tr>
<td>Dry- Freeze</td>
<td>WA I-90</td>
<td>WA SR 12</td>
<td>CO IH 70</td>
<td>NE US 14</td>
<td>NV</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>----</td>
</tr>
<tr>
<td>Warm Mix</td>
<td>Sasobit</td>
<td>Aquablack</td>
<td>Sasobit (1.5%); Evotherm DAT (0.5%); Advera (0.3% of mix)</td>
<td>Advera, Evotherm DAT</td>
<td>Ultrafoam</td>
</tr>
<tr>
<td>Production Temp., °F</td>
<td>HMA (330), Sasobit (276)</td>
<td>HMA (325), Aquablack (275)</td>
<td>HMA (mixing 310, compaction 280); Sasobit (255, 235); Evotherm (250, 230); Advera (255, 235)</td>
<td>H (330), W (275)</td>
<td>H (330), W (275)</td>
</tr>
<tr>
<td>Traffic (AADT)</td>
<td>13,000</td>
<td>6,550</td>
<td>30,000</td>
<td>2,140</td>
<td>5,000</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Basalt</td>
<td>Basalt</td>
<td>Crushed River Rock</td>
<td>Limestone, Gravel</td>
<td>N/A</td>
</tr>
<tr>
<td>NMAS, in.</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Asphalt Binder</td>
<td>76-28</td>
<td>64-28</td>
<td>58-28</td>
<td>64-28</td>
<td>64-28</td>
</tr>
<tr>
<td>Anti-stripping Agent</td>
<td>None</td>
<td>Superbond (0.25%)</td>
<td>Hydrated Lime (1% by mass of aggregate blend)</td>
<td>None</td>
<td>Hydrated Lime, 1.5%</td>
</tr>
<tr>
<td>Asphalt Content, %</td>
<td>5.5</td>
<td>5.2</td>
<td>6.3</td>
<td>5.0</td>
<td>4.6</td>
</tr>
<tr>
<td>G_{mm}</td>
<td>2.601</td>
<td>2.596</td>
<td>2.45</td>
<td>H-Adv (2.439), H-Evo (2.441)</td>
<td>2.451</td>
</tr>
<tr>
<td>Sampling Date</td>
<td>8/27/12</td>
<td>8/28/12</td>
<td>10/18/12</td>
<td>10/14/12</td>
<td>10/19/12</td>
</tr>
<tr>
<td>RAP, %</td>
<td>15-20</td>
<td>20</td>
<td>None</td>
<td><15</td>
<td>15</td>
</tr>
<tr>
<td>Structure</td>
<td>3" Overlay + 11.28" HMA + 6.5" base (HMA)/5" base (Sasobit)</td>
<td>3" Overlay + 7.8" HMA + 9" base</td>
<td>2.5" Overlay + 10-11" HMA</td>
<td>3" Overlay + 4" HL Slurry Stabilization + 1.5" Existing Asphalt + 4” Bit Sand Base</td>
<td>6" HMA + 9" Aggregate Base</td>
</tr>
<tr>
<td>Dry No-Freeze</td>
<td>TX SH 251</td>
<td>TX SH 71</td>
<td>CA HVS 3a</td>
<td>CA HVS 3b</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Warm Mix</td>
<td>Astec DBG</td>
<td>Evotherm DAT</td>
<td>Gencor, Evotherm DAT, Cecabase</td>
<td>Sasobit, Advera, Astec DBG, Rediset</td>
<td></td>
</tr>
<tr>
<td>Production Temp., °F</td>
<td>H (310), W (270)</td>
<td>H (330), W (240)</td>
<td>HMA (320), Gencor (284), Evotherm (248), Cecabase (266)</td>
<td>HMA (335, 279), Sasobit (300,279), Advera (295,266), Astec DBG (295,257), Rediset (285,258)</td>
<td></td>
</tr>
<tr>
<td>Traffic (AADT)</td>
<td>2,300</td>
<td>57,000</td>
<td>HMA (74,000), Gencor (159,000), Evotherm and Cecabase (160,000)</td>
<td>HMA, Sasobit, Astec DBG and Rediset (160,000), Advera (50,000)</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td>Limestone</td>
<td>Limestone</td>
<td>Granite</td>
<td>Reed</td>
<td></td>
</tr>
<tr>
<td>NMAS, in.</td>
<td>3/8</td>
<td>3/8</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>Asphalt Binder</td>
<td>70-22</td>
<td>76-22</td>
<td>64-16</td>
<td>64-16</td>
<td></td>
</tr>
<tr>
<td>Anti-stripping Agent</td>
<td>1% Akzo</td>
<td>0.8% Liquid</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Asphalt Content, %</td>
<td>5.1</td>
<td>4.8</td>
<td>7.0</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>G<sub>mm</sub></td>
<td>H (2.45), W (2.4)</td>
<td>2.416</td>
<td>H (2.503)</td>
<td>H (2.505)</td>
<td></td>
</tr>
<tr>
<td>Sampling Date</td>
<td>2/5/13</td>
<td>2013</td>
<td>2012</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>RAP, %</td>
<td>None</td>
<td>N/A</td>
<td>Rubber (18% of binder)</td>
<td>Rubber (18% of binder)</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>2.0" Overlay + 4.3" HMA</td>
<td>2" Overlay + HMA</td>
<td>2.5" Gap-graded Rubberized HMA + 2.5" HMA + 15.6" Base</td>
<td>2.5" Gap-graded Rubberized HMA + 2.5" HMA + 15.6" Base</td>
<td></td>
</tr>
</tbody>
</table>
Field Work Progress

New Projects

<table>
<thead>
<tr>
<th>Items</th>
<th>MT I-15</th>
<th>IA US 34</th>
<th>TN SR 125</th>
<th>TX FM 973</th>
<th>LA US 61</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
</tr>
<tr>
<td>Distress Survey</td>
<td>✔ ✔ ✔ ✔ ✔ ✔ ✔ - ✔ ✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWD/Coring</td>
<td>✔ ✔ ✔ ✔ ✔ ✔ ✔ - ✔ ✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In-service Projects

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2</td>
</tr>
<tr>
<td>Distress Survey</td>
<td>✔ ✔</td>
<td></td>
</tr>
<tr>
<td>FWD/Coring</td>
<td>✔ ✔</td>
<td></td>
</tr>
</tbody>
</table>

In-service Projects (continued)

<table>
<thead>
<tr>
<th>Items</th>
<th>TX SH 251</th>
<th>NE US 14</th>
<th>TX FM 324</th>
<th>LA 3121</th>
<th>LA 116</th>
<th>LA 3191</th>
<th>NV Bravo</th>
<th>IL 147</th>
<th>PA SR 2006</th>
<th>TX SH 71</th>
<th>CA HVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2</td>
</tr>
<tr>
<td>Distress Survey</td>
<td>✔ ✔</td>
<td></td>
</tr>
<tr>
<td>FWD/Coring</td>
<td>✔ ✔</td>
<td></td>
</tr>
</tbody>
</table>

Notes: “✔”: completed; blank cells: to be completed; “-”: not planned or not available.
<table>
<thead>
<tr>
<th>Mixture Test</th>
<th>IDT Dynamic Modulus/Creep Compliance</th>
<th>Fatigue-IDT Fracture at Room Temp</th>
<th>Thermal Cracking-IDT Fracture at Low Temp</th>
<th>Rutting/Moisture - Hamburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Conditions</td>
<td>Temp.: −4, 14, 32, 50, 68, 86ºF; Frequency: 20, 10, 5, 1, 0.1, 0.01 Hz Duration: 100 seconds</td>
<td>Temp.: 68ºF Loading rate: 2 in./min</td>
<td>Temp.: 14ºF Loading rate: 0.1 in./min</td>
<td>Temp.: 122ºF Wet condition</td>
</tr>
<tr>
<td>Material Properties</td>
<td>Dynamic modulus; Creep compliance</td>
<td>IDT strength; Fracture work density; Vertical failure deformation Horizontal failure strain</td>
<td>IDT strength; Fracture work density; Vertical failure deformation; Horizontal failure strain</td>
<td>Rut depth; Stripping inflection point (SIP); Cycles</td>
</tr>
<tr>
<td>References/Standards</td>
<td>AASHTO T322 Wen et al. 2002</td>
<td>AASHTO T322</td>
<td>AASHTO T322 Wen 2012</td>
<td>AASHTO T324</td>
</tr>
</tbody>
</table>

Vertical Failure Deformation

![Graph of Vertical Failure Deformation](image)

Peak Stress

Load

Fracture Work

Vertical Displacement
Rutting Resistance Index (RRI)

\[\text{RRI} = \text{No. of Cycles @ end of test} \times (1" - \text{Rut Depth}) \]

(1) Good rutting performance: 0.1 in. @ 20,000 cycles, RRI=18,000

(2) Average rutting performance: 0.3 in. @ 20,000 cycles, RRI=14,000

(3) Poor rutting performance: 0.5 in. @10,000 cycles, RRI=5,000
Binder Test Summary

<table>
<thead>
<tr>
<th>Binder Test</th>
<th>PGs</th>
<th>Rutting: MSCR</th>
<th>Fatigue: Monotonic at Room Temp</th>
<th>Thermal Cracking: Monotonic at Low Temp</th>
</tr>
</thead>
</table>
| Testing Conditions | Different temp depending on the test (DSR, BBR) | Stress: 0.1, 3.2kPa
Temp.: 98%
Reliability from LTPP Bind | Temp.: 68°F
Shear strain rate: 0.3 s⁻¹ | Temp.: 41°F
Shear strain rate: 0.01s⁻¹ |
| Material Properties | PG; BBR stiffness; m-value | Jnr₀.₁, Jnr₃.₂; R₀.₁, R₃.₂ | Maximum stress; Fracture energy; Failure strain | Maximum stress; Fracture energy; Failure strain |
| References/Standards | AASHTO MP1/T240/T313 | AASHTO T350 | Wen et al. 2010 | Wen 2012 |
Outline

■ Objectives & Research Progress

■ Preliminary Findings
 ■ Transverse Cracking
 ■ Top-down Longitudinal Cracking
 ■ Rutting & Moisture Susceptibility
 ■ Effects of WMA on construction practices
 ■ Material Properties Changes
 □ MT I-15 Project
 □ TN SR 125 Project
 □ IA US 34 Project

■ Summary and Future Work
Transverse Cracking

- Field Performance Comparison between HMA and WMA
 - 1st Round Survey
 - 2nd Round Survey

- Significant Determinants for Transverse Cracking
 - 1st Round Results
 - 2nd Round Results

- Use Determinant to Compare HMA and WMA
Transverse Cracking

Existing crack in the shoulder

Reflective

Surface-initiated

Evotherm

Underlying

Overlay

Advera

Overlay

Underlying
1st Round HMA/WMA Transverse Cracking Comparison

14 (21 H-W Pairs) out of 28 projects exhibited transverse cracking

Graph:
- **y-axis:** Project Number
- **Legend:**
 - H>W
 - H=W
 - H<W

Map:
- **Regions:**
 - Dry Freeze
 - Wet Freeze
 - Dry No-Freeze
 - Wet No-Freeze

- **Counts:**
 - 3/6
 - 5/10
 - 1/4
 - 5/8
2nd Round HMA/WMA Transverse Cracking Comparison

22 (35 H-W pairs) out of 28 projects exhibited transverse cracking.
Significant Determinants of Transverse Cracking

- Compare Material Properties
 - $H > W$, $H = W$, $H < W$ (t-test)

- Compare Field Performance
 - $H > W$, $H = W$, $H < W$ (t-test)

- Compare the two rankings
 - Consistent trend
 - No consistent trend

- Summarize the number of pairs with consistent trend and determine the promising indicator
Significant Determinants for Transverse Cracking Based on 1st Round Results

15 out of 21 HMA/WMA pairs
Verification: Significant Determinants for Transverse Cracking Based on 2nd Round Results

25 out of 35 HMA/WMA pairs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBR stiffness</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Binder shear strength (41°F)</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Binder shear strength (68°F)</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Binder fracture energy (41°F)</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Mix E* (41°F)</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Mix work density (14°F)</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Mix horizontal failure strain (68°F)</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Mix vertical failure deformation (68°F)</td>
<td>14</td>
<td>21</td>
</tr>
</tbody>
</table>

Diagram: Bar chart showing the number of positive and negative pairs for various parameters.
Use of Fracture Work Density as Indicator for Transverse Cracking Performance

HMA and WMA are comparable.
Pairs of HMA and WMA Whose FWD are not comparable

<table>
<thead>
<tr>
<th>WMA</th>
<th>Project</th>
<th>FWD</th>
<th>Air Void</th>
<th>Asphalt Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasobit</td>
<td>MT I-15</td>
<td>H < W</td>
<td>H (2.7%) = W (3.0%)</td>
<td>H (5.0%) > W (4.4%)</td>
</tr>
<tr>
<td>CA 3b</td>
<td>H < W</td>
<td>H (9.4%) > W (7.4%)</td>
<td>H (6.7%) = W (6.4%)</td>
<td></td>
</tr>
<tr>
<td>CA3a</td>
<td>H > W</td>
<td>H (4.4%) < W (7.1%)</td>
<td>H (7.2%) = W (7.5%)</td>
<td></td>
</tr>
<tr>
<td>Evotherm</td>
<td>TN SR 125</td>
<td>H > W</td>
<td>H (5.9%) < W (7.8%)</td>
<td>H (6.4%) > W (6.0%)</td>
</tr>
<tr>
<td>MT I-15</td>
<td>H < W</td>
<td>H (2.7%) = W (2.0%)</td>
<td>H (5.0%) > W (4.6%)</td>
<td></td>
</tr>
<tr>
<td>Water-based</td>
<td>VA I66</td>
<td>H > W</td>
<td>H (4.5%) < W (5.3%)</td>
<td>H (5.5%) = W (5.4%)</td>
</tr>
<tr>
<td>Foaming</td>
<td>TN SR 46</td>
<td>H > W</td>
<td>H (5.0%) < W (6.9%)</td>
<td>H (5.4%) > W (5.2%)</td>
</tr>
<tr>
<td></td>
<td>TX SH 71</td>
<td>H > W</td>
<td>H (6.7%) = W (7.2%)</td>
<td>H (4.6%) = W (4.9%)</td>
</tr>
<tr>
<td></td>
<td>MT I-15</td>
<td>H < W</td>
<td>H (2.7%) = W (2.5%)</td>
<td>H (5.0%) > W (4.4%)</td>
</tr>
</tbody>
</table>

\[
y = -45.34 \ln(x) + 128.54 \\
R^2 = 0.472
\]

\[
y = 3.0982e^{0.4907x} \\
R^2 = 0.2872
\]
Implementation of the Use of Significant Determinants in Mix Design

\[FWD = -91.38 + 0.387VFA + 66.74G_{se} + 8.08\varepsilon_b + 15.76P_b + 2.97P_{50} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWD</td>
<td>mixture fracture work density tested at 14°F, kPa</td>
<td></td>
</tr>
<tr>
<td>G_{se}</td>
<td>aggregate effective specific gravity</td>
<td>0.006</td>
</tr>
<tr>
<td>VFA</td>
<td>voids filled with asphalt, %</td>
<td>0.006</td>
</tr>
<tr>
<td>\varepsilon_b</td>
<td>binder failure strain tested at 41°F</td>
<td>0.000</td>
</tr>
<tr>
<td>P_b</td>
<td>asphalt content, %</td>
<td>0.000</td>
</tr>
<tr>
<td>P_{50}</td>
<td>percentage passing No. 50 sieve size</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Higher FWD, if
- ductile asphalt binder (i.e., a higher level of failure strain),
- relatively more asphalt (i.e., higher asphalt content, VFA)
- contains more aggregate passing the No. 50 sieve,
- contains hard aggregate (high G_{sb}).
Measured Work Density Vs Calculated Work Density

\[y = 0.9742x \]

\[R^2 = 0.7748 \]
Summary of Transvers Cracking Study

- The transverse cracking may be a combination of thermal cracking and reflective cracking.
- In general, HMA and WMA have comparable transverse cracking performance in the field.
- Fracture work density and dynamic modulus are found to be a significant determinant of transverse cracking.
- Fracture work density is very sensitive to air void and asphalt content.
Summary of Transvers Cracking Study

To achieve high fracture work density and good resistance to transverse cracking:

- a high asphalt content and VFA,
- a ductile asphalt binder,
- hard aggregates
- a fine gradation.
Outline

- Objectives & Research Progress
- Preliminary Findings
 - Transverse Cracking
 - Top-down Longitudinal Cracking
 - Rutting & Moisture Susceptibility
 - Effects of WMA on construction practices
 - Material Properties Changes
 - MT I-15 Project
 - TN SR 125 Project
 - IA US 34 Project

- Summary and Future Work
Top-down Longitudinal Cracking

- Field Performance Comparison between HMA and WMA
 - 1st Round Survey
 - 2nd Round Survey

- Significant Determinants for Top-down Cracking
 - 1st Round Results
 - 2nd Round Results

- Use Determinant to Compare HMA and WMA

- Implementation in Mix Design
Top-down Fatigue Cracking
8 (17 H-W pairs) out of 24 projects exhibited top-down longitudinal cracking.
2nd Round HMA/WMA Top-down Cracking Comparison
14 (24 H-W pairs) out of 28 projects exhibited top-down longitudinal cracking.

![Bar chart showing the comparison of HMA/WMA top-down cracking]

- **3/6**: 18 projects with H=W
- **5/10**: 5 projects with H>W
- **6/8**: 6 projects with H<W

![Map showing the distribution of HMA/WMA top-down cracking across the USA]

- **Dry Freeze**
- **Dry No-Freeze**
- **Wet Freeze**
- **Wet No-Freeze**
Significant Determinants for Top-down Longitudinal Cracking Based on 1st Round Results

Vertical failure deformation
(68°F), 15 out of 17 pairs

- **Mix IDT strength (68°F)**
- **Mix creep compliance (68°F)**
- **Mix horizontal failure strain (68°F)**
- **Mix vertical failure deformation (68°F)**
Verification: Significant Determinants for Top-down Cracking Based on 2nd Round Results

Vertical failure deformation and horizontal failure strain (68ºF), 17 out of 24 pairs
Use of Vertical Failure Deformation as Indicator for Top-down Longitudinal Cracking Resistance

HMA vs Sasobit

Pairs of HMA vs WMA

HMA vs Chemical

Pairs of HMA vs WMA

HMA vs Water-based Foaming

Pairs of HMA vs WMA

HMA vs Water-containing Foaming

Pairs of HMA vs WMA
Pairs of HMA and WMA Whose VFD are not comparable

<table>
<thead>
<tr>
<th>WMA</th>
<th>Project</th>
<th>VFD</th>
<th>Air Void</th>
<th>Asphalt Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasobit</td>
<td>WA I90</td>
<td>H > W</td>
<td>H (2.5%) < W (3.1%)</td>
<td>H (5.4%) = W (5.6%)</td>
</tr>
<tr>
<td></td>
<td>PA SR 2006</td>
<td>H > W</td>
<td>H (5.0%) < W (6.0%)</td>
<td>H (6.1%) = W (5.8%)</td>
</tr>
<tr>
<td>Water-based</td>
<td>TX SH 251</td>
<td>H < W</td>
<td>H (4.2%) = W (4.1%)</td>
<td>H (5.3%) = W (5.1%)</td>
</tr>
<tr>
<td>Foaming</td>
<td>TX SH 71</td>
<td>H > W</td>
<td>H (6.6%) < W (7.7%)</td>
<td>H (4.6%) = W (4.9%)</td>
</tr>
</tbody>
</table>

Graphs:
- **Left:**
 - Equation: $y = -0.366\ln(x) + 2.0454$
 - $R^2 = 0.1517$
- **Right:**
 - Equation: $y = 0.2979e^{0.2854x}$
 - $R^2 = 0.3514$
Implementation of the Use of Significant Determinants in Mix Design

VFD = -3.285 + 0.361P_b - 0.000152σ_b + 0.0172P_{30} + 0.0988G_{sb}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFD</td>
<td>vertical failure deformation of mix 68°F, mm</td>
<td></td>
</tr>
<tr>
<td>P_b</td>
<td>binder content, %;</td>
<td>0.000</td>
</tr>
<tr>
<td>σ_b</td>
<td>binder shear strength tested at 68°F, kPa</td>
<td>0.000</td>
</tr>
<tr>
<td>P_{30}</td>
<td>percentage passing No. 30 sieve size</td>
<td>0.002</td>
</tr>
<tr>
<td>G_{sb}</td>
<td>aggregate bulk specific gravity</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Higher VFD, if the mix has
- a relatively higher asphalt content,
- lower binder shear strength,
- finer gradation (more aggregate passing the No. 30 sieve)
- harder aggregate (high G_{sb}).
Summary of Top-down Fatigue Cracking Study

- In general, HMA and WMA have comparable top-down fatigue cracking performance in the field, except in a few cases organic and water-containing WMA have more cracking than HMA.

- The use of vertical failure deformation to represent field performance to remove the effects of other factors shows that HMA and WMA have comparable top-down fatigue cracking performance.

- Vertical failure deformation and horizontal failure strain of a mix are found to be the significant determinants of top-down fatigue cracking.
Summary of Top-down Fatigue Cracking Study

- Vertical failure deformation is sensitive to air void and asphalt content.

- To achieve a high vertical failure deformation and good resistance to top-down fatigue cracking, a mix have:
 - a relatively high asphalt content
 - a soft binder
 - fine aggregate gradation
 - hard aggregates.
Outline

- Objectives & Research Progress
- Preliminary Findings
 - Transverse Cracking
 - Top-down Longitudinal Cracking
 - Rutting & Moisture Susceptibility
 - Effects of WMA on construction practices
 - Material Properties Changes
 - MT I-15 Project
 - TN SR 125 Project
 - IA US 34 Project

- Summary and Future Work
Rutting Performance

- Field Performance Comparison between HMA and WMA
 - 2nd Round Survey
- Significant Determinants for Rut Depth
 - 2nd Round Results
- Use Determinant to Compare HMA and WMA
- Implementation in Mix Design
Rutting
2nd Round HMA/WMA Rutting Performance Comparison

23 projects (43 H-W pairs) exhibited measurable rut depth.

HMA and WMA are comparable in rut depth.
Significant Determinants for Rutting Resistance

- 34 out of 41 HMA/WMA pairs
- 39 out of 43 HMA/WMA pairs

Bar chart showing:
- Positive and Negative No. of Pairs
- Mix RRI
- High and Low PG
- Mix creep compliance (86°F)
- Hamburg Rutting Resistance Index
- Binder high temp PG
- Binder low temp PG
- Mix E* (86°F)
Use of RRI as Indicator of Rutting Performance

HMA vs Sasobit

HMA vs Chemical

HMA vs Water-based

HMA vs Water-containing
Pairs of HMA and WMA Whose RRI are not comparable

<table>
<thead>
<tr>
<th>WMA</th>
<th>Project</th>
<th>RRI</th>
<th>Air Void</th>
<th>Asphalt Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasobit</td>
<td>PA 2006</td>
<td>H < W</td>
<td>H (7.0%) = W (6.8%)</td>
<td>H (6.1%) = W (5.8%)</td>
</tr>
<tr>
<td>Chemical</td>
<td>NE US 14</td>
<td>H > W</td>
<td>H (8.0%) = W (8.4%)</td>
<td>H (4.7%) = W (4.8%)</td>
</tr>
<tr>
<td>Water-containing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foaming</td>
<td>MO Hall St.</td>
<td>H < W</td>
<td>H (6.0%) = W (6.25%)</td>
<td>H (5.8%) = W (5.5%)</td>
</tr>
<tr>
<td>Water-based Foaming</td>
<td>LA 116</td>
<td>H > W</td>
<td>H (5.4%) < W (6.7%)</td>
<td>H (4.4%) = W (4.6%)</td>
</tr>
</tbody>
</table>

Graphs

1. **Asphalt Content vs. Air Void**
 - Equation: $y = -1299.8x + 20368$
 - $R^2 = 0.1558$

2. **Asphalt Content vs. Rutting Resistance Index**
 - Equation: $y = 2E+06e^{-0.967x}$
 - $R^2 = 0.3256$
Implementation of the Use of Significant Determinants in Mix Design

RRI = 3700.555 + 2187.602P_{100} + 122.027R_{3.2} – 323.71P_{16} – 73.374VFA +2054.665P_{ba}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRI</td>
<td>rutting resistance index, RRI = N × (1 - RD)</td>
<td></td>
</tr>
<tr>
<td>P_{100}</td>
<td>percentage passing No. 100 sieve</td>
<td>0.000</td>
</tr>
<tr>
<td>R_{3.2}</td>
<td>percentage of recovery of binder at stress level of 3.2 kPa from MSCR test</td>
<td>0.000</td>
</tr>
<tr>
<td>P_{16}</td>
<td>percentage passing No. 16 sieve</td>
<td>0.000</td>
</tr>
<tr>
<td>VFA</td>
<td>voids filled with asphalt</td>
<td>0.003</td>
</tr>
<tr>
<td>P_{ba}</td>
<td>asphalt binder absorption</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Measured RRI Vs Calculated RRI

y = 1.0165x
R² = 0.70
Summary of Rutting Study

- In general, HMA and WMA have comparable rutting performance in the field.

- The mix’s rutting resistance index (RRI) is recommended to be a significant determinant of rutting performance.

- To develop a rutting resistant mix, a mix has
 - a high percent recovery from MSCR test
 - a low VFA
 - a high asphalt absorption rate
 - a gap-graded aggregate.
Moisture Susceptibility

For the projects that show SIP, it is found that anti-stripping agents were not applied in most cases.
Summary of Rutting Study

- In general, HMA and WMA have comparable rutting performance in the field.

- The mix’s rutting resistance index (RRI) is recommended to be a significant determinant of rutting performance.

- To develop a rutting resistant mix, a mix needs to have a high percent recovery from MSCR test, a low VFA, a high asphalt absorption rate, and a gap-graded aggregate.

- A mix without anti-stripping agent is likely to have a stripping inflection point.
Outline

- Objectives & Research Progress

- Preliminary Findings
 - Transverse Cracking
 - Top-down Longitudinal Cracking
 - Rutting & Moisture Susceptibility
 - Effects of WMA on construction practices
 - Material Properties Changes
 - MT I-15 Project
 - TN SR 125 Project
 - IA US 34 Project

- Summary and Future Work
Air Void: WMA/HMA

Air Void Content Ratio, WMA/HMA

Frequency

0.65-0.75 0.75-0.85 0.85-0.95 0.95-1.05 1.05-1.15 1.15-1.25 1.25-1.35 1.35-1.45 1.45-1.55 1.55-1.65 1.65-1.75 1.75-1.85 1.85-1.95 1.95-2.05

AV Ratio = 1

Air Void Content Ratio
Binder Content: WMA/HMA
Fractured Aggregate after Testing
Summary

- As a whole, WMA has a tendency to have slight higher air void and lower asphalt content.
- The mix design results in the laboratory based on gyratory compactor may not be translated into the field.
- The compaction pressure may be too high and does not distinguish different mixes.*
Outline

- Objectives & Research Progress
- Preliminary Findings
 - Transverse Cracking
 - Top-down Longitudinal Cracking
 - Rutting & Moisture Susceptibility
 - Material Properties Changes
 - MT I-15 Project
 - TN SR 125 Project
 - IA US 34 Project
- Summary and Future Work
TN SR 125 Project: HMA Pavement

Before Construction

During Construction

After Construction

3 years After Construction
TN SR 125 Project: 2014 Vs 2011 Field Cores
Dynamic Modulus
2014 field cores shows higher E^* than 2011
TN SR 125 Project: 2014 Vs 2011 Field Cores
Air Void

Air Void, %

HMA 2011
HMA 2014
Evotherm 2011
Evotherm 2014

HMA
Evotherm
Creep Compliance

Creep Compliance Master Curve at 68°F Reference Temperature

HMA F3 2014 (6.4%)
HMA M3 2014 (6.3%)
HMA T1 2014 (7.0%)
HMA #3 2011 (5.7%)
HMA #5 2011 (6.0%)
HMA #17 2011 (6.6%)

Evo F3 2014 (9.3%)
Evo M2 2014 (8.6%)
Evo T3 2014 (7.5%)
Evo #5 2011 (6.2%)
Evo #8 2011 (8.3%)
Evo #18 2011 (9.0%)
TN SR 125 Project: 2014 Vs 2011 Field Cores

Creep Compliance

2014 field cores shows lower creep compliance than 2011
TN SR 125 Project: 2014 Vs 2011 Field Cores

IDT Test at Intermediate Temperature

- **IDT Strength, kPa**
 - HMA: 2011 HMA (7.5%), 2014 HMA (5.9%)
 - Evotherm: 2011 Evotherm (7.2%), 2014 Evotherm (8.0%)

- **Work Density, kPa**
 - HMA: 2011 HMA (7.5%), 2014 HMA (5.9%)
 - Evotherm: 2011 Evotherm (7.2%), 2014 Evotherm (8.0%)

- **Vertical Failure Deformation, mm**
 - HMA: 2011 HMA (7.5%), 2014 HMA (5.9%)
 - Evotherm: 2011 Evotherm (7.2%), 2014 Evotherm (8.0%)

- **Horizontal Failure Strain**
 - HMA: 2011 HMA (7.5%), 2014 HMA (5.9%)
 - Evotherm: 2011 Evotherm (7.2%), 2014 Evotherm (8.0%)
TN SR 125 Project: 2014 Vs 2011 Field Cores

IDT Test at Low Temperature

- 2011 HMA (6.0%)
- 2014 HMA (5.9%)
- 2011 Evotherm (7.0%)
- 2014 Evotherm (7.8%)
Binder MSCR Tests

TN SR 125 Project: 2014 Vs 2011 Field Cores
TN SR 125 Project: 2014 Vs 2011 Field Cores

Binder Fracture Tests at Intermediate Temperature
TN SR 125 Project: 2014 Vs 2011 Field Cores

Binder Fracture Tests at Low Temperature

![Graph showing failure strain comparison between HMA and Evotherm in 2011 and 2014.](image)
Summary of Material Properties between HMA and WMA (TN SR125 Project)

<table>
<thead>
<tr>
<th>Material</th>
<th>Material Property</th>
<th>HMA Vs. WMA</th>
<th>2011</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14°F</td>
<td>68°F</td>
</tr>
<tr>
<td>Mix</td>
<td>Dynamic Modulus</td>
<td>Evotherm</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>Creep Compliance</td>
<td>Evotherm</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>Vertical Failure Deformation (68°F)</td>
<td>Evotherm</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>Fracture Work Density (14°F)</td>
<td>Evotherm</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Binder</td>
<td>PGs</td>
<td>Evotherm</td>
<td><</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>MSCR-R₃,₂</td>
<td>Evotherm</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>Fracture Energy (68°F)</td>
<td>Evotherm</td>
<td><</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>Failure Strain (41°F)</td>
<td>Evotherm</td>
<td>=</td>
<td>=</td>
</tr>
</tbody>
</table>
Summary of Change of Material Properties

- The oxidation leads to higher modulus, smaller creep compliance and slopes, higher PG, compromised cracking resistance and improved rutting resistance.
- The application of chip seal significantly slowed down the oxidation.
- There is no clear trend of significant change of ranking between HMA and WMA after 2 or 3 years in service.
Outline

- Objectives & Research Progress
- Preliminary Findings
 - Transverse Cracking
 - Top-down Longitudinal Cracking
 - Rutting & Moisture Susceptibility
 - Material Properties Changes
 - MT I-15 Project
 - TN SR 125 Project
 - IA US 34 Project
- Summary and Future Work
Summary:

- In general, there is no significant difference of field performance between HMA and WMA pavements.
- Fracture work density, vertical failure deformation (and/or dynamic modulus), and rutting resistance index are recommended to be the significant determinants of transverse cracking, top-down fatigue cracking and rutting, respectively.
- Reducing the asphalt content based on laboratory compaction may compromise the cracking performance of a mix and should be discouraged.
Summary:

- A mix is more resistant to transverse cracking if it has a relatively high binder content and VFA, a ductile binder, hard aggregates and a fine aggregate gradation.
- A mix is more resistant to top-down cracking if it has a relatively high binder content, a soft binder, hard aggregates and a fine aggregate gradation.
- A mix is more resistant to rutting if it has a binder with high percent recovery, a low VFA, a gap-graded aggregate gradation, and a high asphalt absorption rate.
- Use of anti-stripping agent may be beneficial to avoid the moisture damage.
Summary:

- The aging of HMA and WMA does not significantly affect the property ranking.
Recommendations for implementations

- Implementation of findings
 - Develop mix design criteria based on significant determinants
 - Fracture work density for transverse cracking
 - Vertical failure deformation or horizontal failure strain for top-down cracking
 - Rutting resistance index for rutting
 - Use of anti-stripping agent
 - How much?
 - Procedure to ensure WMA has sufficient asphalt content
 - Adjustment of laboratory compaction
 - Compaction pressure, etc.
 - Use the material and field data to calibrate the Pavement ME models for rutting, top-down cracking, etc.
 - Develop binder specifications based on binder, mix and field data.
Thank You!
Any questions?