LTPP SPS-10: Warm Mix Asphalt (WMA) Overlays of AC Pavements

FHWA Asphalt Mixture ETG
April 8, 2015
Fall River, Massachusetts

Jim Musselman
Florida DOT
Background

• Need to investigate long-term performance of WMA
 – Higher potential for rutting?
 – Increased risk of moisture damage?
• Compare WMA to HMA
• Compare various WMA technologies
• Investigate inclusion of RAP in various quantities
Experimental Design

<table>
<thead>
<tr>
<th>WMA Technology</th>
<th>Wet</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Test Sections on Project</td>
<td>Freeze</td>
<td>No Freeze</td>
</tr>
<tr>
<td>HMA (Control)</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>WMA (Foaming Process)</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>WMA (Chemical Additive)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

16 Projects
SPS-10 Requirements

• Asphalt overlay of existing asphalt pavements
• Overlay thickness from 2” – 4”
 – Test Sections ~ 800’ long
 – 500’ plus transition and sampling areas
• Dense-graded mix
• RAP content 10 - 25% (binder replacement)
• 1 HMA control test section
• 2 WMA test sections
 – Foaming Process
 – Chemical Additive
Experimental Layer Requirements

• Mix design and asphalt binder grade selection based on Agency’s standard practice
• Overlay thickness selected by Agency’s standard practice
• Uniformity between HMA and WMA
 – Same binder source/grade
 – Same aggregate source/gradations
 – Mix design/JMF
Tests on Experimental Layer

• Dynamic Modulus – Small-scale AMPT (TP 79)
 – 0, 6, 12 and 18 months after construction

• 38 mm diameter x 110 mm height specimens
 – Re-cored horizontally from 6” diameter core
 – OTHERWISE in accordance with AASHTO TP79
Tests on Experimental Layer (cont.)

• Binder Testing – DSR, BBR, MSCR
 – Tank Binder
 – Extracted binder at 0, 6, 12 and 18 months

• Hamburg Wheel Tracker
 – Initial time period only

• Basic Mix Characterization
 – G_{mb}, G_{mm}, P_b, G_{se}, G_b, aggregate gradation
Tests on Existing Asphalt Layers

- Dynamic Modulus – Small-scale AMPT (TP 79)
- Binder Testing – DSR, BBR, MSCR
- Hamburg Wheel Tracker
- Basic Mix Characterization
 - G_{mb}, G_{mm}, P_b, G_{se}, G_b, aggregate gradation

All tests performed at initial time period only
ETG Recommendations

• Supplementary Tests for Agencies:
 – Based on NCHRP Research Digest 370
 – “Guidelines for Project Selection and Materials Sampling, Conditioning, and Testing in WMA Research Studies”
Supplementary Tests

Rutting

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Number (AMPT)</td>
<td>AASHTO TP 79</td>
</tr>
<tr>
<td>Hamburg Test</td>
<td>AASHTO T 324 (Note: Prepare specimens at air voids content of 7±1% and conduct test at standard conditions: 50°C under water.)</td>
</tr>
<tr>
<td>APA</td>
<td>AASHTO T 340</td>
</tr>
</tbody>
</table>

Modulus

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Modulus (AMPT)</td>
<td>AASHTO PP 61</td>
</tr>
</tbody>
</table>

Fatigue Cracking

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Fatigue</td>
<td>AASHTO T 321</td>
</tr>
<tr>
<td>Simplified Viscoelastic Continuum Damage (S-VECD)</td>
<td>AASHTO TP 107</td>
</tr>
<tr>
<td>Superpave Indirect Tension Test (IDT)</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Semi-Circular Bending Test at Intermediate Temperatures</td>
<td>Louisiana Transportation Research Center (LTRC)</td>
</tr>
</tbody>
</table>

Thermal (Low Temperature) Cracking

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDT Creep Compliance and Strength</td>
<td>AASHTO T 322</td>
</tr>
<tr>
<td>Semi-Circular Bending Test</td>
<td>AASHTO TP 105</td>
</tr>
<tr>
<td>Disk Shaped Compact Tension – DC(T) Test</td>
<td>ASTM D7313</td>
</tr>
</tbody>
</table>
Supplementary Tests

Durability

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Sensitivity</td>
<td>AASHTO T 283 (Note: 1 Freeze/Thaw cycle)</td>
</tr>
<tr>
<td>Hamburg Test</td>
<td>AASHTO T 324 (Note: Prepare specimens at air voids content of 7±1% and conduct test at standard conditions: 50°C under water.)</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{mm}</td>
<td>AASHTO T 209</td>
</tr>
<tr>
<td>Volumetric Properties</td>
<td>AASHTO R 35</td>
</tr>
<tr>
<td>Gyratory Compaction to N_{design}</td>
<td>AASHTO T 312</td>
</tr>
</tbody>
</table>

Additional information on these recommended tests can be found at the following location:

Current Status

• 27 States/Provinces plan to nominate a project
• To date, 18 projects have been nominated:
 – 13 projects accepted
 – 3 projects rejected
 – 2 projects being evaluated
Accepted Project Nominations

- Arizona (2)
- Ontario (2)
- Florida
- Georgia
- Nevada
- New Mexico
- Oklahoma
- Oregon
- Texas
- Washington
- Manitoba
Plans to Nominate

- Alabama
- Arkansas
- Delaware
- District of Columbia
- Kansas
- Louisiana
- Michigan
- Minnesota
- Nebraska
- North Carolina
- Rhode Island
- South Carolina
- Vermont
- Virginia
- Quebec
- Saskatchewan
Supplemental Sections

- Agencies can build additional test sections that will be monitored as part of the LTPP program
 - Varying levels of RAP
 - Additional WMA technologies
 - Layer thickness variation
 - Open or gap graded mixtures
 - Varying aggregate sources/absorption levels
 - Other variables of interest to Agency
ETG Recommendations

• Supplementary Test Sections:
 – Variable Density Levels
 – WMA produced at HMA temperatures
 – Other WMA technologies
 – High Recycle Binder Ratio (>0.25) Mixes
Southern Region

James Sassin, LTPP Southern Region
jsassin@fugro.com
Southern Region

• New Mexico - I-40 (October 2014)
 – WMA with chemical additive (Cecabase)
 – WMA with chemical additive (Cecabase) and PG 70-28+ binder (standard binder is PG 70-28 binder)

• Oklahoma - SR-66 (April 2015)
 – Stone matrix asphalt with chemical WMA additive
 • No fibers, RAP, or RAS
 – PG 64-22 binder with 10% - 25% RAP/RAS
 • standard binder is PG 70-28
 – PG 58-28 binder with 10% - 25% RAP/RAS
Southern Region

• Georgia – US-84 (Summer 2015)
 – 1.5” overlay (standard overlay is 2”)
• Texas - US-277 (February 2015)
 – No Supplemental Sections
• Florida – SR-77 Jackson County (Spring 2016)
 – Chemical at HMA temperature
 – Foaming with >35% RAP
 – Chemical with >35% RAP
Western Region

Jason Puccinelli, LTPP Western Region
jpuccinelli@ncenet.com
Western Region

• Arizona: (Both projects will have the same supplemental test sections):
 – 1 foaming section with increased RAP,
 – 1 chemical section with increased RAP,
 – 1 HMA with increased RAP.

• Nevada:
 – 1 organic WMA section,
 – 1 foaming additive,
 – 1 foaming additive with TBR (terminal blend rubber),
 – HMA with TBR
Western Region

• Oregon:
 – 1 foaming section produced at hot mix temperatures,
 – 1 HMA section with increased RAP

• Washington:
 – 1 HMA section with ½” NMAS and 60 gyration mix
 – 1 foaming section with ½” NMAS and 60 gyration mix,
 – 1 HMA section with 3/8” NMAS and 100 gyration mix,
 – 1 HMA with 3/8” NMAS and 60 gyration mix
North Central Region

Gabe Cimini, LTPP North Central Region

gabe.cimini@stantec.com
North Central Region

• Manitoba:
 – WMA Chemical Additive & Foaming Process test section (Evotherm and Water),
 – WMA Foaming Process test section (water).
North Atlantic Region

Gabe Cimini, LTPP North Atlantic Region

gabe.cimini@stantec.com
North Atlantic Region

• Ontario:
 – WMA Chemical Additive test section (Rediset),
 – WMA Organic Additive test section (SonneWarmix).
Summary

• 13 of the 16 projects have been selected
 – 5 Western Region
 – 5 Southern Region
 – 2 North Atlantic Region
 – 1 North Central Region

• Majority will be constructed 2015
 – Time’s running out if you need something

• Most states are adding supplemental sections
Contacts

Jason Puccinelli, LTPP Western Region: jpuccinelli@ncenet.com

Gabe Cimini, LTPP North Central and North Atlantic Regions gabe.cimini@stantec.com

James Sassin, LTPP Southern Region jsassin@fugro.com

Jack Springer, FHWA-LTPP Jack.springer@dot.gov
International Society of the Sweater Vest
Thank You... Questions?