Asphalt Diffusion

Pavel Kriz

Contributions by Selena Lavorato, Andrew Pahalan, Steve Manolis (Coco Asphalt Engineering), Alan Blahey, Mary Gale, Daniel Grant (Imperial Oil), Ralph Shirts (ExxonMobil), Nadjib Boussad (Esso S.A.F.)

ETG – Baton Rouge
Sept 18, 2014
Understand RAP-Virgin Binder Diffusion

Objective
- Understand diffusion between RAP and Virgin binder
- Understand impact of binder blending on rheological properties

Approach
- Understand diffusion kinetics
- Verify the approach for asphalt mix
- Translate findings to mix production & paving conditions
Section 1
Binder Diffusion
RAP-Virgin Binder Diffusion Key to Performance

- Diffusion rate depends on molecular mobility → temperature & molecular structure

![Diagram showing RAP-aggregate, RAP binder, and Virgin binder diffusion into a mix with test in rheometer and results for RAP aggregate, RAP-virgin binder diffusion, and Virgin binder diffusion corrected for effects of oxidation & evaporation.](image)
Diffusion Coefficient Calculated from Viscosity

\[\phi_{RAP}(y, t) = (1 - \alpha)(1 - \phi_0^{\text{Virgin}}) - \frac{2(1 - \phi_0^{\text{Virgin}})}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\pi\alpha)}{n} \cos\left(\frac{n\pi y}{L}\right) \exp\left\{-\left(\frac{n \pi}{L}\right)^2 D t\right\} \]

- **RAP conc. in distance y at time t**
- **Average RAP conc. in the specimen**
- **Distance from the top plate**
- **Total sample thickness**
- **Diffusion coefficient**

Experimental Results

\[\eta(t) = \frac{L}{\int_0^L \frac{\eta_{RAP}}{\eta_{\text{Virgin}}} dy} \]

\[\eta(t) \] = Experimental Results

Model Fit

\[\eta(t) \] = Model Fit

Time [s]
Diffusion is Faster at Higher Temperature

- Faster Brownian motion at higher temperature increases diffusion rate & reduces time to equilibrium (homogenous blend)
Binder Blending in Mix is More Complex

Film thickness & time at temperature define blending in the mix
• Distribution of thicknesses exists
• Proper binder contact may not be reached by mixing

Understanding effective binder thickness in mix is essential
Section 2

Mix Diffusion

“Finding the Distance”
Specific Mixes Prepared to Study Diffusion

<table>
<thead>
<tr>
<th>ID</th>
<th>Binder Added</th>
<th>Aggregate</th>
<th>RAP</th>
<th>Air Voids %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virgin</td>
<td>Same in all mixes</td>
<td>None</td>
<td>30%</td>
</tr>
<tr>
<td>AD</td>
<td>Asphalt Diffusion</td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Same in all mixes</td>
<td>RAP aggregate</td>
<td>None</td>
<td>2.7</td>
</tr>
<tr>
<td>BC</td>
<td>Blended Control</td>
<td>Lab Blend (Virgin+ RAP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Same in all mixes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Superpave 12.5mm Mix Design (OPSS.MUNI 1151)
Mix Briquette Cut & Conditioned

Conditioning in N₂ purged PAV at constant temperature (90, 120, 150 °C) & variable time
Testing in DSR – High Variability is a Challenge

- Test in torsion, 10 rad/s, 20 °C, constant strain (LVE)
 - Small size specimen selected as a compromise to manage time & effort
 - Larger aggregate significantly contribute to variability
- 5-10 repeats, COV remained high
RAP Mix is Softer than Control (pre-blended binders)

EXPERIMENTAL DATA FOR DIFFUSING (AD) & CONTROL MIX (BC)

Significant hardening attributed to binder absorption & evaporation
Diffusion Only Partially Responsible for Mix Hardening

Shaded Area = Contribution of diffusion to complex viscosity increase

Separated contribution of diffusion to complex viscosity increase
Binder Diffusion Model Fits Mix Data Well

MODEL FIT OF EXPERIMENTAL MIX DATA

90 °C

120 °C

150 °C

Diffusion distance = 800µm
Diffusion = Lengthy Process at Mix/Pavement Temperatures

In realistic mix production & placement scenario incomplete blending results in lower complex viscosity

COMPLEX VISCOSITY INCREASE (DIFFUSION CONTRIBUTION)

Fraction of Homogenous Viscosity

- **Time, days**
 - 10^{-4}
 - 10^{-2}
 - 10^{0}
 - 10^{2}
 - 10^{4}

- HMA
- WMA

- mix
- silo
- transport
- paving
- service

100 days
Extent of Blending is Critical for RAP Mix Performance & Virgin PG Selection

Binder film thickness & time at temperature are critical parameters for diffusion in the asphalt mix

Diffusion may not be completed during mix production

• Effective binder viscosity is lower than expected (“lubrication”)

Silo storage at higher temperature can assist diffusion

Asphalt mix is a dynamic system

• Caution should be used during mix testing
Thank you
Appendix
Proper Binder Contact is Essential for Good Blending

<table>
<thead>
<tr>
<th>Factors: Contact</th>
<th>Factors: Blending</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP temperature</td>
<td>Diffusion rate (D(T))</td>
</tr>
<tr>
<td>Mixing energy/time</td>
<td>Film thickness (distance)</td>
</tr>
<tr>
<td>Virgin binder viscosity</td>
<td>Time</td>
</tr>
</tbody>
</table>

Poor contact
- Poor blending

Good contact
- Good blending

Virgin Aggregate | RAP Aggregate | Virgin Binder | RAP Binder | Binder Blend

Factors:
- RAP temperature
- Mixing energy/time
- Virgin binder viscosity

Blending Factors:
- Diffusion rate (D(T))
- Film thickness (distance)
- Time
RAP-Virgin Binder Blending is Critical to Mix Rheology

Viscosity of two discrete layers of RAP & virgin binder is significantly lower than that of homogenous blend.
Diffusion Rate Can Be Estimated From Viscosity-Temperature Profile

The free volume theory was used to relate diffusion coefficient to viscosity-temperature profile, $\eta(T)$
Relatively accurate estimations of diffusion coefficients are possible from Newtonian viscosity-temperature profiles (Brookfield at 100-140 °C)
Experimental Results Sensitive to Test Setup

Density differences between binders impact diffusion rates. Higher test strains result in artificially higher diffusion rates.

- **Effect of RAP Layer Position**
 - Denser RAP **top** layer = faster
 - Denser RAP **bottom** layer = slower

- **Effect of Test Strain on Diffusion Rate**
 - Higher strain \rightarrow mechanical mixing
Simulating Diffusion Rate at Realistic Conditions

Diffusion coefficient decreases with mix cooling

- Mixing
- Storage
- Transport
- Placement
- Service
Mix Temperature Profile Determined to Assess Extent of Diffusion Before Testing

![Temperature Profile Graph]

- **Mixing**
- **Quenching**
- **Storage**

Axes:
- **Time, min**
- **Temperature, °C**

Samples:
- VC
- RC
- BC
- AD