Update

NCHRP Project 9-61
Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

Ramon Bonaquist, P.E.
Advanced Asphalt Technologies, LLC
Research Team

• Advanced Asphalt Technologies, LLC
 – Ramon Bonaquist - PI

• Western Research Institute
 – Jeramie Adams - Co-PI

• Consultants
 – Dave Anderson
 – Gayle King
 – Jim Rosenberger
 – Erick Sharp
Today’s Outline

• Review Objectives and Tasks
• Review Evaluation of Conditioning Procedures
• Planned Experimental Work
• Schedule
Objectives

• Evaluate laboratory conditioning procedures
 – AASHTO T 240, AASHTO R 28 and alternatives

• Recommend improvements
 – New procedure
 – Modifications to existing procedures

• Calibrate the improved procedures to accurately simulate aging
 – Mixture production, transport, and placement
 – Service life of the pavement
Approach

- Task 1. Evaluate and Select Methods
- Task 2. Prepare Experimental Plans
- Task 3. Prepare Interim Report
- Task 4. Conduct and Analyze Experiments
- Task 5. Perform Industry Impact Assessment
- Task 6. Prepare Methods in AASHTO Format
- Task 7. Prepare Final Report
Guiding Principles

• Binder aging is a two stage process
 – Short-Term or Construction
 • High temperature
 • Oxidation and volatile loss
 – Long-Term or Service life
 • Service temperature
 • Oxidation
 – Laboratory conditioning needs to address both
 • Short-term at typical construction temperatures
 • Long-term requires a compromise to accelerate the process
Guiding Principles

- Conditioning procedures must yield enough binder for current specification testing
 - 4 mm DSR is an excellent tool for research and forensic evaluation but it is not ready for use in practice

- Conditioning procedures need to be calibrated to pavements
Transverse Cracking in SPS 8 Sections

Length of Transverse Cracks, m

Pavement Age, yrs

- AR
- CA
- MS
- NM
- NC
- MO
- NY
- OH
- WI
Practice Related Conditioning Issues

AASHTO T 240 (RTFOT)
- Uniformity of the film
- Some modified binders tend to crawl out of the bottle
- Shape of the bottle makes recovery of the binder and cleaning difficult
- Procedure does not address WMA

AASHTO R 28 (PAV)
- Concern that conditioning is not severe enough
- Service life that is simulated is not well defined
Alternatives Considered

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Short-Term</th>
<th>Long-Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ageing Profile Test (UK)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Modified German Rotating Flask</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PAV Modifications</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>• Film Thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mixing (Ultrasonic or Acoustic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotating Cylinder Ageing Test</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stirred Air Flow Test</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Universal Simple Aging Test (USAT)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Evaluation Criteria

- Address issues with current procedures
- Quantity of binder
- Number of binders per run
- Conditioning time
- Field calibration
- Standardization
- Equipment availability and cost
- Training effort and cost
Short-Term Selections

- Modifications to AASHTO T 240 made in the U.K. Ageing Profile Test

- Thicker Film USAT
 - Around 0.8 mm rather than 0.3 mm to increase yield
Long-Term Selection

• PAV Optimization
 – Thinner film
 – Longer condition times
 – Increased temperatures
 – Ruled Out
 • Increased pressure
 – Current vessel design
 – Shape of pressure dependency of oxidation reactions
 • Ultrasonic or Acoustic Mixing
 – Not successful in preliminary testing
PAV Film Thickness

- AAF-1, 20 hrs
- AAF-1, 40 hrs

Log Stiffness, MPa

m-value

0.45
0.40
0.35
0.30
0.25
0.20

1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05

3.18 mm
1.59 mm
1.08 mm
0.80 mm

Advanced Asphalt Technologies, LLC
"Engineering Services for the Asphalt Industry"
Phase 2 Experiments

• Short-Term
 – Selection
 – Calibration

• Long-Term
 – PAV Operating Parameters
 – Calibration

• Sensitivity Study
Short-Term Selection

• Make final selection of short-term procedure
 – AASHTO T 240
 – AASHTO T 240 with mixing screw
 – Static thin film (0.8 mm)

• Compare binder conditioning procedures to binder recovered from short-term oven conditioned mixtures
 – NCHRP 9-52 recommendations
 • HMA 2 hours at 135 °C
 • WMA 2 hours at 116 °C
Short-Term Selection Binders

<table>
<thead>
<tr>
<th>Binder</th>
<th>Viscosity Pa·s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>135 C</td>
</tr>
<tr>
<td>Neat PG 52-34</td>
<td>0.22</td>
</tr>
<tr>
<td>Terpolymer PG 64-34</td>
<td>0.73</td>
</tr>
<tr>
<td>Neat PG 64-22</td>
<td>0.43</td>
</tr>
<tr>
<td>SBS PG 76-22</td>
<td>1.11</td>
</tr>
<tr>
<td>SBS PG 64-34</td>
<td>1.21</td>
</tr>
<tr>
<td>SBS PG 76-28</td>
<td>2.36</td>
</tr>
</tbody>
</table>
Initial Results
Initial Results

![Graph showing the relationship between Viscosity and Conditioning Temperature with data points for 163 C and 135 C.]
Short-Term Calibration

- Calibrate the selected procedure (varying conditioning time) to reproduce properties of binder recovered from short-term conditioned loose mix
- NCHRP 9-52 recommendations
 - HMA 2 hours at 135 °C
 - WMA 2 hours at 116 °C
PAV Operating Parameters

• Investigate how to reasonably simulate more aging using the PAV

• Vary
 – Thickness: 1.59 mm to 0.8 mm
 – Time: 20 to 40 hours
 – Temperature: 100 to 120 ºC

• Compare to recovered binders
 – Hot Climate ARC Arizona Validation (4 & 9 yrs)
 – Cool Climate ARC Minnesota Validation (5 &11 yrs)
 – 3 depths
Factorial Design

<table>
<thead>
<tr>
<th>Run</th>
<th>Temp., °C</th>
<th>Mass, g</th>
<th>Time, hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>12.5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>12.5</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>25.0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>25.0</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>12.5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>12.5</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>25.0</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>25.0</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>18.8</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>18.8</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>12.5</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>25.0</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>110</td>
<td>18.8</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>110</td>
<td>18.8</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>110</td>
<td>18.8</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>110</td>
<td>18.8</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>110</td>
<td>18.8</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>110</td>
<td>18.8</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>110</td>
<td>18.8</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>110</td>
<td>18.8</td>
<td>30</td>
</tr>
</tbody>
</table>
ARC AZ and MN Binders

<table>
<thead>
<tr>
<th>Site</th>
<th>Grade</th>
<th>Source</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona US 93</td>
<td>PG 76-16</td>
<td>WTI/WTS blend</td>
<td>Airblown</td>
</tr>
<tr>
<td></td>
<td>PG 76-16</td>
<td>Venezuelan</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 76-16</td>
<td>Rocky Mountain Blend</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 76-16</td>
<td>Canadian Blend</td>
<td>N/A</td>
</tr>
<tr>
<td>Rochester, MN</td>
<td>PG 58-34</td>
<td>Canadian Blend</td>
<td>Terpolymer</td>
</tr>
<tr>
<td></td>
<td>PG 58-28</td>
<td>Canadian Blend</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 58-28</td>
<td>Middle East Blend</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 58-28</td>
<td>Venezuelan Blend</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Recovered Binder Locations

Minnesota Sections
Built 2006
Cores from 2011 and 2017 (years 5 and 11)

Arizona Sections
Built 2001
Cores from 2005 and 2010 (years 4 and 10)
Long-Term Calibration Using Original Binders and Cores From LTPP

30 Pavements
Age: 8 to 19 yrs
Degree Days: 1400 to 5800
Sensitivity Study

• AASHTO M 320 Table 1 and AASHTO M 332 grade several binders
 – Current AASHTO T 240 and AASHTO R 28
 – Improved procedures developed in NCHRP 9-61
 – Materials with proven performance
 – Newer materials
 – 10 binders

• Information for the Industry Assessment
Status

• Phase 1 complete
 – Interim report available from NCHRP

• In-Progress
 – Short-Term Selection Experiment
 – PAV Operating Parameters Experiment

• Panel review prior to calibration this summer

• Project completion date August 31, 2019
Questions/Discussion

Ramon Bonaquist
Email: aatt@erols.com
Phone: 703-999-8365