Update

NCHRP Project 20-7 Task 400
Effect of Elevation on Rolling Thin Film Oven Aging of Asphalt Binder

Ramon Bonaquist, P.E.
Advanced Asphalt Technologies, LLC
Research Team

• Advanced Asphalt Technologies, LLC
 – Ramon Bonaquist - PI

• Consultants
 – Dave Anderson
 – Jim Rosenberger
Today’s Outline

• Review Objective
• Review Analysis of Existing Data
• Review Experimental Work
• Update Status
Objectives

• Confirm or refute previous studies showing an elevation effect in properties of RTFOT residue

And if there is an effect and it is of engineering significance then….

• Improve the AASHTO T 240 procedure to minimize differences in physical properties of RTFOT residue obtained at different elevations.
Approach

• Perform statistical and engineering analysis of available data:
 – Western Cooperative Testing Group
 – AASHTO Resource Proficiency Samples

• Select method to minimize elevation effect

• Design, execute, and analyze an experiment to confirm viability of the selected method

• Prepare documentation
 – Recommended modifications to AASHTO T 240 with commentary
 – Report with data files
WCTG Binder 552

- Graph 1: G'/sinθ vs. Elevation, 1000 ft
- Graph 2: JMR vs. Elevation, 1000 ft
- Graph 3: Mass Change, % vs. Elevation, 1000 ft
- Graph 4: Recovery, % vs. Elevation, 1000 ft

Data points are shown for Original and RTFOT treatments.
What Are the Options?

• Modify RTFOT to condition at a constant pressure
• Relate elevation effect to other measured binder properties
• Vary RTFOT temperature with elevation
• Vary RTFOT time with elevation

2 min/1,000 ft
Experiment Design

- Graph showing the relationship between RTFOT Conditioning Time (min) and Elevation (ft).
- Two sets of data points:
 - Lab Testing
 - Expected

Advanced Asphalt Technologies, LLC
"Engineering Services for the Asphalt Industry"
Experimental Design

- 25 Labs
 - 181 ft to 7124 ft
- 8 Binders

<table>
<thead>
<tr>
<th>Binder</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 64-22</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 76-22</td>
<td>Polymer</td>
</tr>
<tr>
<td>PG 58-28</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 64-28</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 76-28</td>
<td>Polymer</td>
</tr>
<tr>
<td>PG 52-34</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 58-34</td>
<td>Polymer</td>
</tr>
<tr>
<td>PG 64-34</td>
<td>Polymer</td>
</tr>
</tbody>
</table>
Status

• Received mass change data and conditioned residue from all labs
• Residue from 12 labs has been tested
• Statistical analysis of data is underway
• Final recommendations this summer
Questions/Discussion

Ramon Bonaquist
Email: aatt@erols.com
Phone: 703-999-8365