NCHRP Project 20-07 / Task 400

Effect of Elevation on Rolling Thin Film Oven Aging of Asphalt Binder

Ramon Bonaquist, P.E.
Advanced Asphalt Technologies, LLC
Lots of Help

- Dave Anderson
- Jim Rosenberger
- Gayle King
- John Malusky
- Shauna Teclemariam
- Volunteer Labs
- Binder Suppliers
Outline

• Review Objectives
• Review Approach
• Review Findings of Statistical Analysis
• Effect of Conditioning Time of Properties of RTFOT Residue
• Present Final Experimental Design
• Update Status
Objectives

• Confirm or refute previous studies showing an elevation effect in properties of RTFOT residue

And if there is an effect and it is of engineering significance then…

• Improve the AASHTO T 240 procedure to minimize differences in physical properties of RTFOT residue obtained at different elevations.
Approach

• Perform statistical and engineering analysis of available data:
 – Western Cooperative Testing Group
 – AASHTO Resource Proficiency Samples

• Select method to minimize elevation effect

• Design, execute, and analyze an experiment to confirm viability of the selected method

• Prepare documentation
 – Recommended modifications to AASHTO T 240 with commentary
 – Report with data files
Statistical Analysis

- **Western Cooperative Testing Group**
 - 11 binders, 1 neat, 10 modified
 - 40 labs, 1 replicate
 - 441 observations
 - 12 to 6,720 ft elevation range (uniform distribution)

- **AASHTO Resource**
 - 4 binders, 2 neat, 2 modified
 - 213 labs, 2 replicates
 - 1700 observations
 - 0 to 6,295 ft elevation range (68 % below 1,000 ft)
Statistical Analysis

• Properties
 – Original G*/sinδ
 – RTFOT G*/sinδ
 – Aging Index
 – $J_{nr3.2}$
 – $R_{3.2}$
 – Mass Change
AASHTO Resource 235/236

Graphs showing the relationship between elevation (1000 ft) and various parameters:
- $G'\sin\delta$, kPa
- J_{NR}, 1/kPa
- Mass Change, %
- $\%R$, %
Summary of Statistically Significant Effects

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Binder</th>
<th>Type*</th>
<th>RTFOT G*/sinδ, kPa/1,000 ft</th>
<th>Aging Index</th>
<th>Mass Change, %/1,000 ft</th>
<th>Jnr, kPa⁻¹/1,000 ft</th>
<th>%R, %/1,000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCTG</td>
<td>551</td>
<td>P</td>
<td>-0.0615</td>
<td>-0.0354</td>
<td></td>
<td>0.0333</td>
<td>-0.059</td>
</tr>
<tr>
<td></td>
<td>552</td>
<td>P</td>
<td>-0.0641</td>
<td>-0.0427</td>
<td></td>
<td>0.0432</td>
<td>-0.269</td>
</tr>
<tr>
<td></td>
<td>553</td>
<td>P</td>
<td>-0.0239</td>
<td>-0.0146</td>
<td></td>
<td>0.0394</td>
<td>-0.432</td>
</tr>
<tr>
<td></td>
<td>554</td>
<td>P</td>
<td>-0.0173</td>
<td>-0.0136</td>
<td></td>
<td>0.0677</td>
<td>-0.677</td>
</tr>
<tr>
<td></td>
<td>555</td>
<td>N</td>
<td>-0.1149</td>
<td>-0.0740</td>
<td>-0.0033</td>
<td>0.0927</td>
<td>-0.119</td>
</tr>
<tr>
<td></td>
<td>556</td>
<td>P</td>
<td>-0.0496</td>
<td>-0.0251</td>
<td></td>
<td>0.0027</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>557</td>
<td>P</td>
<td>-0.0914</td>
<td>-0.0442</td>
<td></td>
<td>0.0204</td>
<td>-0.546</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>P</td>
<td>-0.0477</td>
<td>-0.0271</td>
<td></td>
<td>0.0416</td>
<td>-0.415</td>
</tr>
<tr>
<td></td>
<td>561</td>
<td>P</td>
<td>-0.0477</td>
<td>-0.0379</td>
<td></td>
<td>0.0593</td>
<td>-0.282</td>
</tr>
<tr>
<td></td>
<td>562</td>
<td>P</td>
<td>-0.0701</td>
<td>-0.0609</td>
<td></td>
<td>0.0249</td>
<td>0.720</td>
</tr>
<tr>
<td></td>
<td>563</td>
<td>P</td>
<td>-0.0448</td>
<td>-0.0147</td>
<td></td>
<td>0.0076</td>
<td>-0.413</td>
</tr>
<tr>
<td>AASHTO</td>
<td>235/236</td>
<td>N</td>
<td>-0.0613</td>
<td>-0.0374</td>
<td>-0.0059</td>
<td>0.0384</td>
<td>-0.094</td>
</tr>
<tr>
<td>Resource</td>
<td>239/240</td>
<td>N</td>
<td>-0.0806</td>
<td>-0.0412</td>
<td></td>
<td>0.0470</td>
<td>-0.032</td>
</tr>
<tr>
<td></td>
<td>241/242</td>
<td>P</td>
<td>-0.0302</td>
<td>-0.0233</td>
<td></td>
<td>0.0002</td>
<td>0.519</td>
</tr>
<tr>
<td></td>
<td>245/246</td>
<td>P</td>
<td>-0.0257</td>
<td>-0.0188</td>
<td></td>
<td>0.0236</td>
<td>-0.300</td>
</tr>
</tbody>
</table>

* N denotes neat binder, P denotes polymer modified binder
Engineering Significance of Elevation Effect: $G^*/\sin\delta$
What Are the Options?

- Modify RTFOT to condition at a constant pressure
- Relate elevation effect to other measured binder properties
- Vary RTFOT temperature with elevation
- Vary RTFOT time with elevation
Effect of Conditioning Time on RTFOT Residue Properties

- $G^*/\sin\delta$, kPa
- J_{NR-1}/kPa
- Mass Change, %
- % R, %
Experimental Estimate of Additional RTFOT Conditioning Time

<table>
<thead>
<tr>
<th>Binder</th>
<th>$\Delta G^*/\sin \delta$, kPa/min</th>
<th>$\Delta G^*/\sin \delta$, kPa/1,000 ft</th>
<th>Additional Conditioning Time, min/1,000 ft</th>
<th>ΔJ_{NR}, kPa⁻¹/min</th>
<th>ΔJ_{NR}, kPa⁻¹/1,000 ft</th>
<th>Additional Conditioning Time, min/1,000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>235/236</td>
<td>0.0468</td>
<td>-0.0645</td>
<td>1.4</td>
<td>-0.01728</td>
<td>0.0384</td>
<td>2.2</td>
</tr>
<tr>
<td>239/240</td>
<td>0.0460</td>
<td>-0.0806</td>
<td>1.8</td>
<td>-0.01946</td>
<td>0.0470</td>
<td>2.4</td>
</tr>
<tr>
<td>241/242</td>
<td>0.0217</td>
<td>-0.0296</td>
<td>1.4</td>
<td>-0.01002</td>
<td>0.0006</td>
<td>0.1</td>
</tr>
<tr>
<td>245/246</td>
<td>0.0172</td>
<td>-0.0257</td>
<td>1.5</td>
<td>-0.00939</td>
<td>0.0217</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Average = 1.9 min/1000 ft
Theoretical Estimate of Additional RTFOT Conditioning Time

Carbonyl formation rate model

\[r_{CA} = A p^\alpha e^{\left(\frac{-E}{RT}\right)} \]

where:
- \(r_{CA} \) = carbonyl formation rate
- \(p \) = oxygen pressure
- \(T \) = temperature
- \(R \) = universal gas constant
- \(A, \alpha, \) and \(E \) are binder dependent fitting constants

Theoretical Estimate of Additional RTFOT Conditioning Time

- Assume rheological properties depend on total amount of carbonyl formed

\[
(r_{CA})_0 t_0 = (r_{CA})_h t_h
\]

\[
t_h = t_0 \left(\frac{p_0}{p_h} \right)^\alpha
\]
Theoretical Estimate of Additional RTFOT Conditioning Time

<table>
<thead>
<tr>
<th>Elevation ft</th>
<th>(\alpha = 0.25)</th>
<th>(\alpha = 0.30)</th>
<th>(\alpha = 0.35)</th>
<th>(\alpha = 0.40)</th>
<th>(\alpha = 0.45)</th>
<th>(\alpha = 0.50)</th>
<th>(\alpha = 0.55)</th>
<th>(\alpha = 0.60)</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>1000</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>2000</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>88</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>3000</td>
<td>88</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td>90</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>91</td>
</tr>
<tr>
<td>4000</td>
<td>89</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>93</td>
</tr>
<tr>
<td>5000</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>6000</td>
<td>90</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>99</td>
<td>96</td>
</tr>
<tr>
<td>7000</td>
<td>91</td>
<td>93</td>
<td>94</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>100</td>
<td>101</td>
<td>98</td>
</tr>
</tbody>
</table>
Experiment Design

- Elevation, ft
- RTFOT Conditioning Time, min

- Lab Testing
- Expected
Experimental Design

- 24 Labs
 - 181 ft to 7124 ft

- 8 Binders

<table>
<thead>
<tr>
<th>Binder</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 64-22</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 76-22</td>
<td>Polymer</td>
</tr>
<tr>
<td>PG 58-28</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 64-28</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 76-28</td>
<td>Polymer</td>
</tr>
<tr>
<td>PG 52-34</td>
<td>Neat</td>
</tr>
<tr>
<td>PG 58-34</td>
<td>Polymer</td>
</tr>
<tr>
<td>PG 64-34</td>
<td>Polymer</td>
</tr>
</tbody>
</table>
Experimental Design

• Each lab will condition each binder at two times based on elevation
 – 2 bottles for mass change at lab
 – 2 bottles returned to AAT for rheological testing
 – 8 RTFOT runs per laboratory

• Analysis
 – T 240 mass change
 – T 315 G*/sinδ
 – T 350 J_{nr3.2}, and R_{3.2}
Status

• Binders have been received
• Containers have been received
• Currently breaking down binders for shipment
• Expect an e-mail from me to verify shipping address and laboratory elevation
• Expect to ship binders in October