NCHRP Project 9-61

Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

Ramon Bonaquist, P.E.
Advanced Asphalt Technologies, LLC
Research Team

• Advanced Asphalt Technologies, LLC
 – Ramon Bonaquist - PI
• Western Research Institute
 – Jeramie Adams - Co-PI
• Consultants
 – Dave Anderson
 – Gayle King
 – Jim Rosenberger
 – Erick Sharp
Outline

• Objectives
• Project Tasks
• Work Completed
• What’s Next
Objectives

• Evaluate AASHTO 240, AASHTO R 28 and alternatives

• Recommend improvements
 – New procedure
 – Modifications to existing procedures

• Calibrate the improved procedures to accurately simulate aging
 – Mixture production, transport, and placement
 – Service life of the pavement
NCHRP 9-61 Is Not!

- A study of binder rheology
- A study of binder chemistry
- A study to relate chemical and rheological properties of binders
- A study to recommend improved specification criteria
Approach

- Task 1. Evaluate and Select Methods
- Task 2. Prepare Experimental Plans
- Task 3. Prepare Interim Report
- Task 4. Conduct and Analyze Experiments
- Task 5. Perform Industry Impact Assessment
- Task 6. Prepare Methods in AASHTO Format
- Task 7. Prepare Final Report
How Much Binder?

• Only a few grams if you use 4 mm DSR
 – Probably not realistic at this time

• M 320 or M 332 without direct tension
 – 35 g for verification
 – 65 g for grading

• M 320 or M 332 with Modified DENT? (per 9-59)
 – 75 g for verification
 – 105 g for grading

• M 320 or M 332 with LAS? (per 9-59)
 – 40 g for verification
 – 70 g for grading
What is Target Age for Long-Term?

- Consensus that R 28 (20 hour PAV) is not severe enough
- Research now using 40 hour PAV
- Limited field data equating either 20 or 40 hour PAV to field properties
 - SHRP A 369: 20 hr PAV ~ 4 to 8 years
 - Erskine, et al. 2012: 40 hr PAV ~ 8 years
 - AAPTP Project 06-01: No change to R 28
 - WRI Fundamental Properties of Asphalts and Modified Asphalts III : ALF, and AZ
 - Braden Smith
Analysis of LTPP SPS 8 Sites

• New pavements on roads with limited truck traffic
• Two sections
 – 4 in AC on 8 in of aggregate base
 – 7 in AC on 12 in of aggregate base
• 15 sites constructed
• Distresses monitored every 1 to 2 years
Transverse Cracking in SPS 8 Sections

Length of Transverse Cracks, m vs. Pavement Age, yrs

- AR
- CA
- MS
- NM
- NC
- MO
- NY
- OH
- WI
Practice Related T 240
Conditioning Issues

• Uniformity of the film and how well it is renewed is viscosity dependent
• Some modified binders tend to crawl out of the bottle
• Shape of the bottle makes recovery of the binder and cleaning difficult
• Procedure does not address WMA
Short-Term Alternates

- Modified German Rotating Flask
- Stirred Air Flow Test
- Universal Simple Aging Test
- Rotating Cylinder Ageing Test
- Ageing Profile Test
Short-Term Considerations

• Quantity of binder
• Number of binders per run
• Conditioning time
• Improves film uniformity
• Eliminates crawling from container
• Suitable for crumb rubber binders
• Simulate HMA and WMA temperatures
• Improves binder recovery
• Standard available
• Equipment availability
• Equipment cost
• Training cost
Short-Term Selections

• Modifications to t 240 made in the U.K. Ageing Profile Test

• Thicker Film USAT
 – Around 0.8 mm rather than 0.3 mm to increase yield
AAC-1 @ 163 °C for 85 min

![Graph showing G*/sinδ at 58°C, kPa vs. Thickness, mm. The graph compares AAC-1 Pan Aged, RTFOT, and Original samples.](image-url)
AAF-1 @ 163 C for 85 min

Graph showing the relationship between thickness (mm) and $G*/\sin\delta$ at 64°C, kPa for AAF-1 Pan Aged, RTFOT, and Original samples.
Practice Related R 28
Conditioning Issues

• Conditioning is not severe enough
• Service life that is simulated is not well defined
Long-Term Alternates

- Rotating Cylinder Ageing Test
- Ageing Profile Test
- Universal Simple Aging Test
- Extended Time PAV
- Thinner Film PAV
- Increased Temperature PAV
- Mixing in PAV
 - Ultrasonic
 - Resonant Acoustic
Long-Term Considerations

- Quantity of binder
- Number of binders per run
- Conditioning time
- Conditioning temperature
- Atmosphere (air vs oxygen)
- Pressure
- Correlated to field aging
- Standard available
- Equipment availability
- Equipment cost
- Training cost
Long-Term Selection

- **Thinner Film PAV**

<table>
<thead>
<tr>
<th>Film Thickness, mm</th>
<th>Surface Area Required, cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verification (75 g assumed)</td>
</tr>
<tr>
<td>3.18</td>
<td>233</td>
</tr>
<tr>
<td>1.59</td>
<td>465</td>
</tr>
<tr>
<td>0.8</td>
<td>925</td>
</tr>
<tr>
<td>0.3</td>
<td>2467</td>
</tr>
</tbody>
</table>
Example PAV Pan for 0.8 mm Film
Proposed Phase 2 Experiments

- Short-Term Final Selection
- Short-Term Calibration
- PAV Thickness, Time, Temperature
- Long-Term Calibration
- Sensitivity Study
Short-Term Selection

• Make final selection of short-term procedure
 – Thin film aging (0.8 mm)
 – UK mixing screw
 – NCHRP 9-61 improved mixing screw

• Compare binder conditioning procedures to binder recovered from short-term oven aged mixtures
 – NCHRP 9-52 recommendations
 • HMA 2 hours at 135 °C
 • WMA 2 hours at 116 °C
Short-Term Selection

<table>
<thead>
<tr>
<th>Aging Methods</th>
<th>Neat PG 52-34</th>
<th>Polymer (Terpolymer) PG 64-34</th>
<th>Neat PG 64-22</th>
<th>Polymer (SBS) PG 76-22</th>
<th>GTR ASTM D 6114</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
<td>HMA</td>
<td>WMA</td>
</tr>
<tr>
<td>AASHTO T 240</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
</tr>
<tr>
<td>UK Mixing Screw</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
</tr>
<tr>
<td>NCHRP 9-61 Mixing Screw</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
</tr>
<tr>
<td>Static Thin Film (0.8 mm)</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
</tr>
<tr>
<td>Recovered, NCHRP 9-52 Oven Aging</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
<td>X X</td>
</tr>
</tbody>
</table>

Response variables:
- High temperature continuous grade
- Master curves
- CS+SO
- GPC for modified binders
Short-Term Calibration

- Calibrate the selected procedure (varying conditioning time) to reproduce properties of binder recovered from short-term conditioned loose mix
- NCHRP 9-52 recommendations
 - HMA 2 hours at 135 °C
 - WMA 2 hours at 116 °C
- High Temperature Continuous Grade
Short-Term Calibration

<table>
<thead>
<tr>
<th>Mix Temp</th>
<th>Binder Type</th>
<th>Low Temp Grade</th>
<th>Binder Properties</th>
<th>Aging Index</th>
<th>Mix Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>19 mm</td>
<td>9.5 mm</td>
<td>SMA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sandstone</td>
<td>Limestone</td>
<td>Diabase with Limestone Filler</td>
</tr>
<tr>
<td>WMA</td>
<td>Neat</td>
<td>-34 or -28</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22 or -16</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Modified</td>
<td>-34 or -28</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22 or -16</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMA</td>
<td>Neat</td>
<td>-34 or -28</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22 or -16</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Modified</td>
<td>-34 or -28</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22 or -16</td>
<td>Low</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
PAV Thickness, Time, Temperature

• Investigate how to reasonably simulate more aging using the PAV
• Vary thickness, time, temperature
• Compare rheological and chemical properties to recovered binders from ARC Arizona (hot, 16 yrs) and Minnesota (cold, 11 yrs) sections
• Binder master curves, carbonyl + sulfoxide
ALF Master Curves

- 6.5 mm 96 Month + 8 Month Accelerated
- 6.5 mm 96 month
- 19 mm 96 month
- 48.5 mm 96 month
- 61.5 mm 96 month

Reduced Frequency, rad/sec

G^*, Pa

Advanced Asphalt Technologies, LLC

“Engineering Services for the Asphalt Industry”
ARC AZ and MN Binders

<table>
<thead>
<tr>
<th>Site</th>
<th>Grade</th>
<th>Source</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona US 93</td>
<td>PG 76-16</td>
<td>WTI/WTS blend</td>
<td>Airblown</td>
</tr>
<tr>
<td></td>
<td>PG 76-16</td>
<td>Venezuelan</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 76-16</td>
<td>Rocky Mountain Blend</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 76-16</td>
<td>Canadian Blend</td>
<td>N/A</td>
</tr>
<tr>
<td>Rochester, MN</td>
<td>PG 58-34</td>
<td>Canadian Blend</td>
<td>Terpolymer</td>
</tr>
<tr>
<td></td>
<td>PG 58-28</td>
<td>Canadian Blend</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 58-28</td>
<td>Middle East Blend</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>PG 58-28</td>
<td>Venezuelan Blend</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Partial Factorial

<table>
<thead>
<tr>
<th>Temp, C</th>
<th>Thickness, mm</th>
<th>Time, hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>90</td>
<td>3.18</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>X</td>
</tr>
<tr>
<td>110</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.59</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td></td>
</tr>
</tbody>
</table>

Response surface experiment
Process improvement experiments
Output of Thickness, Time, Temperature Experiment

- Film thickness
- Conditioning time
- Range of useable temperatures
Long-Term Calibration

• Using thickness and time from the previous experiment, vary the conditioning temperature to determine conditioning temperature that reproduces the properties of binder recovered from field cores

• Binder master curves, carbonyl + sulfoxide
Example

The graph illustrates the change in log ω_c with respect to conditioning temperature (C) for different aggregate sizes. The blue line represents a 75 mm aggregate, while the red line represents a 6 mm aggregate. The graph shows the relationship between the change in log ω_c and the conditioning temperature, highlighting how the properties of asphalt change with temperature and aggregate size.
Available Original Binders and Cores From LTPP
Age

Age, Years

Section Number

Advanced Asphalt Technologies, LLC
“Engineering Services for the Asphalt Industry”
Regression Analysis of Conditioning Temperatures

• Factors
 – Climate
 – Age
 – Depth in pavement
 – Air voids
 – Binder volume

• Use regression model to recommend final lab conditioning temperatures
Sensitivity Study

• M 320 and M 332 Grade several binders
 – Current T 240 and R 28
 – Improved procedures developed in NCHRP 9-61
 – Materials with proven performance
 – Newer materials
 – 8 to 10 binders

• Information for the Industry Assessment