Rheological, Chemical, Mechanical Properties of Re-refined Engine Oil Bottoms (REOB) Modified Binder

Louay N. Mohammad
Taesun You, Yucheng Shi

Department of Civil and Environmental Engineering
LA Transportation Research Center
Louisiana State University

Gaylon Baumgardner, Codrin Daranga
Ergon

William H. Daly, Ioan I Negulescu
Sreelatha Balamurugan

Department of Chemistry, LSU

Munir Nazzal

Department of Civil Engineering
Ohio University

FHWA Asphalt Binder Expert Task Group Meeting
Bozeman, Montana
September 19-20, 2017
The Story!

• Background
• Objectives/Scope
• Methodology
 - Binder Experiment
 • Gel permeation Chromatography (GPC)
 • X-ray fluorescence spectroscopy (XRF)
 • Fourier transform infrared (FTIR) spectroscopy
 • Atomic Force Microscopy (AFM)
 - Mixture Experiment
 • Semi-circular bend (SCB) test

• Results
• Summary and Conclusion
Use of REOB: Concern

- Inconsistent and conflicting conclusions

<table>
<thead>
<tr>
<th>Detrimental</th>
<th>Not Detrimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor field performance</td>
<td>Equal field performance</td>
</tr>
<tr>
<td>Adverse effect on binder properties</td>
<td>Equal or improved binder and mixture properties</td>
</tr>
</tbody>
</table>

- Limitations with current Superpave testing/specification
 - Need for additional aging/testing protocols
 - Sometimes requires other analysis approaches (e.g., GPC, FTIR, XRF etc.)
Objectives

- Evaluate rheological, chemical, micro-mechanical and mechanical properties of aged binders containing
- Correlate binder properties to mixture intermediate temperature cracking performance
Scope

- 12.5 NMAS asphalt mixture
- Four Binders
 - PG 70-22
 - 0-, 5-, 10-, and 15% REOB
- Binder Experiment
 - Rheological tests
 - Micro-mechanical properties
 - atomic force microscopy
 - chemical properties
 - GPC, FTIR, and XRF
- Mixture Experiment
 - SCB at intermediate temperature
 - ASTM D 8044
Binder Experiment • Gel Permeation Chromatography (GPC)

GPC Analysis Principle

PMAC

Increasing Elution Volume

MW (Daltons x 10^-3)

ΔRI (Relative Units)

73.6% MW 1,000

4.9% MW 3,150

17.8% MW 7.5K

3.4% MW 125K

0.3% MW 185K

0.20.51251020501000 5020 10 5 2 1 0.5 0.2
Binder Experiment

- Quantification of GPC curves by integration
Binder Experiment

• X-ray Fluorescence Spectroscopy (XRF)
 - To identify elemental composition of binder samples generally found in REOB
 - Calcium (Ca)
 - zinc (Zn)
 - molybdenum (Mo)
 - copper (Cu)

EDXRF PANalytical Epsilon 1Spectrometer
Binder Experiment

- Fourier Transform Infrared (FTIR) Spectroscopy
 - To identify chemical functional groups
 - Carbonyl Index (CI): presence of REOB and aging change

Bruker Alpha FT–IR spectrometer)
Binder Experiment

- **Atomic Force Microscopy (AFM)**

Reduced Elastic modulus

\[
E_{\text{reduced}} = \frac{\pi}{2} \frac{F}{\delta^2 \tan(\alpha)}
\]

Total energy needed to separate AFM tip from a sample

\[
E_{\text{bonding}} = \int_{z_0}^{z_1} F \, dz \approx \frac{\Delta z}{2N} \sum_{i=1}^{N} [F(z_{i+1}) + F(z_i)]
\]

- \(F\): measured force
- \(\delta\): indentation depth
- \(\alpha\): half-opening angle of the AFM tip
- \(d\): cantilever deflection
- \(z\): piezo-driver displacement
Mixture Experiment

• Semi-Circular Bend Test
• ASTM D8044
• Temperature: 25°C
• Half-circular Specimen
 – Laboratory prepared
 – 150mm diameter X 57mm thickness
 – simply-supported and loaded at mid-point
• Notch controls path of crack propagation
 – 25.4-, 31.8-, and 38.0-mm
• Aging: 5 days, 85°C
• Loading type
 – Monotonic
 – 0.5 mm/min
 – To failure
• Record Load and Vertical Deformation
• Compute Critical Strain Energy: J_c
Results

- PG test results
Results

• Atomic Force Microscopy

Reduced Elastic modulus

Total energy needed to separate AFM tip from a sample
Results -- AFM

- Relationship between E_{reduced} and $G^* \sin \delta$

\[y = 0.46x - 864.58 \]

$R^2 = 0.76$
SARA data of original and aged REOB

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>1000-300K (%)</th>
<th>300-45K (%)</th>
<th>45-19K (%)</th>
<th>Asphaltenes %</th>
<th>Maltenes % < 3K</th>
</tr>
</thead>
<tbody>
<tr>
<td>REOB</td>
<td>0.36</td>
<td>5.54</td>
<td>3.37</td>
<td>18.33</td>
<td>72.4</td>
</tr>
</tbody>
</table>

Determination of maltenes, asphaltenes and polymer content based on the molecular weight regions
Compositional analysis

- Gel Permeation Chromatography

<table>
<thead>
<tr>
<th>Sample</th>
<th>HMW* Polymer 300-45K, %</th>
<th>Associated Asphaltenes 45-19K, %</th>
<th>Asphaltenes 19-3K, %</th>
<th>Maltenes < 3K, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>REOB</td>
<td>5.9</td>
<td>3.37</td>
<td>18.33</td>
<td>72.4</td>
</tr>
<tr>
<td>Unaged base binder</td>
<td>3.96</td>
<td>1.63</td>
<td>21.33</td>
<td>73.08</td>
</tr>
<tr>
<td>Aged base binder</td>
<td>3.16</td>
<td>3.76</td>
<td>24.87</td>
<td>68.27</td>
</tr>
<tr>
<td>Aged 5% REOB modified binder</td>
<td>2.8</td>
<td>3.59</td>
<td>23.66</td>
<td>69.95</td>
</tr>
<tr>
<td>Aged 10% REOB modified binder</td>
<td>4.57</td>
<td>3.95</td>
<td>24.69</td>
<td>66.79</td>
</tr>
<tr>
<td>Aged 15% REOB modified binder</td>
<td>5.1</td>
<td>3.71</td>
<td>23.96</td>
<td>67.23</td>
</tr>
</tbody>
</table>
Results – Compositional analysis

- Gel Permeation Chromatography

Determination of maltenes and asphaltenes content of 64-CO binder based on the molecular weight regions

Determination of maltenes and asphaltenes content of 64-CO binder by deconvolution of the GPC curve
Results -- Compositional analysis

- Gel Permeation Chromatography

Gel Permeation Chromatography results:

- Asphaltenes
 - 16.7% MW 9,6K
 - 4.2% MW 35.0K
 - 55.7% MW 1,025
 - 19.4% MW 3,1K
 - 4.0% MW 115K

- Maltenes
 - 4.7% MW 34K

- Polymer
 - 15.1% MW 3.9K
 - 1.9% MW 108K

- REOB
 - 9.6% MW 9.3K

Graphs showing the composition of aged 0% REOB and aged 15% REOB modified binders.
Compositional analysis

- Gel Permeation Chromatography
 - Distribution of molecular species showing peak molecular weights

<table>
<thead>
<tr>
<th>Sample</th>
<th>HMW* Species %/MW</th>
<th>Associated Asphaltene Species %/MW</th>
<th>Asphaltenes 2 %/MW</th>
<th>Asphaltenes 1 %/MW</th>
<th>Maltenes %/MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged base binder</td>
<td>1.9 /109K</td>
<td>4.7 /34K</td>
<td>15.1 /9.3K</td>
<td>9.6 /3.9K</td>
<td>68.8 /1,050</td>
</tr>
<tr>
<td>Aged 5% REOB modified binder</td>
<td>1.5 /90.5K</td>
<td>4.4 /39K</td>
<td>17.8 /8.5K</td>
<td>7.6 /3.5K</td>
<td>68.7 /1,050</td>
</tr>
<tr>
<td>Aged 10% REOB modified binder</td>
<td>4.1 /110K</td>
<td>3.7 /32K</td>
<td>14.6 /10.8K</td>
<td>14.8 /3.8K</td>
<td>62.8 /1,050</td>
</tr>
<tr>
<td>Aged 15% REOB modified binder</td>
<td>4.0 /115K</td>
<td>4.2 /35K</td>
<td>16.7 /9.6K</td>
<td>19.4 /3.9K</td>
<td>55.7 /1,025</td>
</tr>
</tbody>
</table>
Compositional analysis • Gel Permeation Chromatography

AGED SAMPLES

0% REOB
5% REOB
10% REOB
15% REOB

0%
5%
10%
15%

NORMALIZED CURVES

HIGH MW POLYMERS REGION

MW >200K 100K 50K 20K

UNAGED REOB
Compositional analysis

- Gel Permeation Chromatography
 - Comparison of theoretical data calculated according to percentage of REOB content with experimental results

<table>
<thead>
<tr>
<th>Sample</th>
<th>>45K, %</th>
<th>Asphaltenes, %</th>
<th>Maltenes, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% REOB modified binder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated</td>
<td>3.3</td>
<td>28.22</td>
<td>68.48</td>
</tr>
<tr>
<td>Integrated</td>
<td>2.8</td>
<td>27.25</td>
<td>69.95</td>
</tr>
<tr>
<td>De-convoluted</td>
<td>1.5/90.5K</td>
<td>29.75</td>
<td>68.75</td>
</tr>
<tr>
<td>10% REOB modified binder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated</td>
<td>3.4</td>
<td>27.89</td>
<td>68.68</td>
</tr>
<tr>
<td>Integrated</td>
<td>4.6</td>
<td>28.64</td>
<td>66.79</td>
</tr>
<tr>
<td>De-convoluted</td>
<td>4.1/110K</td>
<td>33.10</td>
<td>62.80</td>
</tr>
<tr>
<td>15% REOB modified binder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated</td>
<td>3.6</td>
<td>27.51</td>
<td>68.89</td>
</tr>
<tr>
<td>Integrated</td>
<td>5.1</td>
<td>27.67</td>
<td>67.33</td>
</tr>
<tr>
<td>De-convoluted</td>
<td>4.0/115K</td>
<td>40.30</td>
<td>55.70</td>
</tr>
</tbody>
</table>
Compositional analysis

- X-ray fluorescence spectroscopy
Compositional analysis

- Fourier transform infrared spectroscopy
Results

- Relationship between mixture cracking performance and binder properties

\[y = 0.00x - 0.56 \]
\[R^2 = 0.77 \]

\[y = -1.62x + 0.38 \]
\[R^2 = 0.85 \]
Summary and Conclusion

- Evaluated rheological, chemical, micro-mechanical and macro-mechanical properties of aged binders containing REOB contents (0-, 5-, 10-, and 15 %)
- In general, binders containing 5% REOB did not adversely affect binder and mixture performance
- ∆Tc increased (-) with an increase in REOB content
 - More pronounced for 2 PAV and 4 PAV aged binders
- Addition of REOB softened the binder
 - low PG decreased with increased REOB content.
- Microscale AFM test results exhibited a decrease in stiffness and bonding energy with an increase in REOB content.
- XRF and FTIR spectroscopy successfully identified REOB in binders
Summary and Conclusion

• Residual polymer content in REOB influenced the distribution of maltenes and asphaltenes when REOB concentrations were greater than 5%.

• Good correlation was observed between microscale AFM stiffness and PG parameter, G*\sin\delta as well as between AFM bonding energy of binders and SCB J_c mixture cracking performance.

• Good correlation between FTIR CI of binders and SCB J_c mixture cracking performance was found up to REOB content 10%.
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Total High MW %</th>
<th>Asphaltenes %</th>
<th>Maltenes %</th>
</tr>
</thead>
<tbody>
<tr>
<td>REOB</td>
<td>16.00</td>
<td>20.97</td>
<td>63.03</td>
</tr>
<tr>
<td>REOB-RTFO</td>
<td>16.66</td>
<td>21.7</td>
<td>61.64</td>
</tr>
<tr>
<td>REOB-PAV</td>
<td>18.84</td>
<td>21.61</td>
<td>59.55</td>
</tr>
</tbody>
</table>

![Graph showing RI response/relative amount vs. Molecular Weight for REOB, REOB-RTFO, and REOB-PAV](image)