DEVELOPMENT OF RUBBER BINDER SPECIFICATIONS IN CALIFORNIA: PROJECT UPDATE

David Jones, PhD and Zia Alavi, PhD
University of California Pavement Research Center
Davis, California

Asphalt Binder Expert Task Group Meeting
Fall River, MA, April 09-10, 2015
Summary

- AR Research Update
- AR Specs Overview
- DSR Geometry Key Findings
- Short Term Oven Aging
- Work in Progress
- Conclusions
AR Research Update

- Asphalt rubber binder specifications
 - Phase 1 report complete, Phase 2 in progress

- PG+5

- Superpave mix design for R-HMA
 - Report with Caltrans

- Rubberized RAP in conventional HMA
 - Testing in progress

- RAP/RAS in rubberized mixes
 - Testing in progress

- In-place recycling of R-HMA
 - Phase 1 (dry testing) report compete and posted
 - Phase 2 (wet testing) in progress
Summary

- AR Research Update
- AR Specs Overview
- DSR Geometry Key Findings
- Short Term Oven Aging
- Work in Progress
- Conclusions
AR Binder Specs Ph1 Overview

- Wet process produced at asphalt plant
 - Used in gap- and open-graded mixes
 - Terminal blend covered under Caltrans PG-M specification

- Review of Caltrans specifications
 - 20 ±2% crumb rubber modifier (CRM)
 - 100% passing #8 (2.36mm)
 - 25 ±2% high natural rubber
 - Ambient ground
 - Extender oil permitted (Type II, 2 to 6% x wt. of binder)
 - QC is viscosity and penetration

- Objective
 - Develop a PG type spec for wet process AR binders
Background

- Superpave binder spec not developed for binders with particulates
 - DSR parallel plate geometry not considered appropriate – requires gap size of 8mm to comply with test physics
 - Tests rheology of rubber particles, not binder
 - RTFO aging is difficult for binders with particulates
- Caltrans specs/QC testing therefore limited to viscosity and penetration
 - Not good indicators of performance
- Phase 1 study
 - Identify most appropriate test procedures to obtain realistic PG grading
Background

- **DSR**
 - Concentric cylinder with 7mm gap considered more appropriate than parallel plate

- **BBR**
 - Specimen preparation

- **Short and long-term aging**
 - Temperature and quantity adjusted to represent AR
Procedure

- Compare DSR geometries on conventional, polymer-modified (PM), and terminal blend (TR) binders
- Compare DSR geometries for testing asphalt rubber binder containing crumb rubber particles of various sizes
- Evaluate the effects of different crumb rubber particle sizes on high, intermediate, and low temperature properties
Summary

- AR Research Update
- AR Specs Overview
- DSR Geometry Key Findings
- Short Term Oven Aging
- Work in Progress
- Conclusions
DSR Geometry Key Findings

- Multiple size ranges tested, with focus on:
 - 180-250µm, 250-425µm, 425-850µm, >850µm
 - (80-60#, 60-40#, 40-20#, >20#)

- Poor correlations with particle sizes >850µm
 - Less than 50% actual size used in California

<table>
<thead>
<tr>
<th>Particle Size Range</th>
<th>Correlation Between Geometries (R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µm</td>
</tr>
<tr>
<td>180-250</td>
<td>180-250</td>
</tr>
<tr>
<td>250-425</td>
<td>250-425</td>
</tr>
<tr>
<td>425-850</td>
<td>425-850</td>
</tr>
<tr>
<td>Combined</td>
<td>Combined</td>
</tr>
</tbody>
</table>
DSR Geometry Key Findings

- Poorer correlations with increasing CRM size
 - Cut-off appears to be at 250µm

- True PG
 - CC gives higher true PG than PP

- Percent recovery @ 64°C and 3.2 kPa
 - CC gives higher % recovery than PP

- \(J_{nr} \) @ 64°C and 3.2 kPa
 - CC gives lower \(J_{nr} \) than PP

- Which number is right?
Summary

- AR Research Update
- AR Specs Overview
- DSR Geometry Key Findings
- Short Term Oven Aging
- Work in Progress
- Conclusions
Short-Term Oven Aging

- Phase 1 compared RTFO and TFO
 - Problems with coating, spillage, and retrieval of aged sample
- AASHTO T240
 - Testing temperature: 163°C
 - Binder content: 35g per glass
- Proposed modifications
 - Test temperature: 190°C (Caltrans spec = 190 to 200°C)
 - Binder content: adjusted for rubber content
 - Eg. 20% CRM = 45g per glass = 35g of base binder
 - No tilting of oven
Modified RTFO Procedure

- Early testing indicates satisfactory results
 - Easier initial coating of the bottle
 - Satisfactory bottle coating
 - No spillage observed
 - Easier retrieval of aged binder
 - More binder to work with

- But
 - Increased safety risk at higher temperatures
 - Increased fumes in the binder lab
Modified RTFO Procedure

Aging Temp: 163°C

Aging Temp: 190°C
Modified RTFO Procedure

- Initial results
 - Higher $G^*/\sin(\delta)$ at 64°C
 - Quantity did not effect result at higher temperature

![Graph showing G*/sin(\delta) and % Change for different conditions](attachment:image.png)
Modified RTFO Procedure

- Initial results
 - Lower phase angle (δ) at 64°C
 - Quantity did not affect result

<table>
<thead>
<tr>
<th>δ @ 64°C (°)</th>
<th>Unaged</th>
<th>RTFO @ 163°C</th>
<th>RTFO @ 190°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Change</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modified RTFO Procedure

- Initial results
 - Higher true PG at 64°C
 - Quantity did not effect result
Summary

- AR Research Update
- AR Specs Overview
- DSR Geometry Key Findings
- Short Term Oven Aging
- Work in Progress
- Conclusions
Work in Progress

- Continued comparison of PP and CC geometries.
- Intermediate temperature grading
 - Too stiff for CC geometry with 7-mm gap
 - Investigating 10-mm gap or “binder bar”
- Low temperature grading
 - Refined BBR sample preparation and testing procedure
- Validation
 - Field produced binders and mix performance
- Preliminary PG specification language
 - Validation on Caltrans projects
 - Revised specification language if required
Summary

- AR Research Update
- AR Specs Overview
- DSR Geometry Key Findings
- Short Term Oven Aging
- Work in Progress
- Conclusions
Conclusions

- Based on the results obtained to date:
 - Concentric cylinder geometry is considered to be a potentially appropriate alternative geometry to parallel plates for assessing AR binders containing crumb rubber particles larger than 250 µm.
 - Modified RTFO procedure more representative of field conditions is recommended.
 - Intermediate and low temperature properties in progress.
Thank-you

Photo courtesy Caltrans