Pavement Temperature Profile Prediction

Temperature Estimate Model for Pavement Structures (TEMPS)

Elie Y. Hajj, Assistant Professor, UNR
M. Zia Alavi, Ph.D., Postdoctoral Scholar, UC Davis
S. Farzan Kazemi, Grad. Research Assistant, UNR
Peter E. Sebaaly, Professor, UNR

FHWA Asphalt Binder Expert Task Group
Baton Rouge, Louisiana – September 17-19, 2014
Pavement Temperature Profile Prediction

Improvement of the *Heat Transfer* model [Han et al., 2011 (TAMU)]
- Enhanced boundary conditions.
- Variable pavement surface radiation properties.

Application of Finite Control Volume method (FCV) with Implicit Scheme [Zia et al., 2014 (UNR)]
- Considering discontinuity in pavement layers’ material.
- Improving the time efficiency of calculation.
Pavement Temperature Profile Prediction

Heat Transfer Model Concept

Heat Transfer Balance Between Pavement Structure & Surrounding Environment

\[
\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\alpha \times \frac{\partial T}{\partial z} \right), \quad \alpha = \frac{k}{\rho \cdot c}
\]
Pavement Temperature Profile Prediction
Numerical Computation: Finite Control Volume Method (FCVM)

Energy Balance in Each of Control Elements
Pavement Temperature Profile Prediction

Standalone Software: TEMPS (Alpha Version)

Temperature Estimate Model for Pavement Structures (TEMPS)
Pavement Temperature Profile Prediction

TEMPS – Input

- **Materials**
- **Climatic Data**
- **Surface Characteristics**
- **Pavement Structure**
- **Mesh Generator**
Pavement Temperature Profile Prediction

TEMPS – Materials

Example-Montana - TEMPS

Material

- Material Type: Material1
- Identifier Color: Brown
- Specific Heat Capacity (J/kg*K): 1900
- Conductivity (W/m*K): 1.00
- Density (kg/m^3): 1500
- Description:

Table:

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Identifier Color</th>
<th>Specific Heat Capacity (J/kg*K)</th>
<th>Conductivity (W/m*K)</th>
<th>Density (kg/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Mixture</td>
<td>Black</td>
<td>921</td>
<td>1.21</td>
<td>2250</td>
</tr>
<tr>
<td>Coarse Agg.</td>
<td>Silver</td>
<td>1900</td>
<td>1.00</td>
<td>1800</td>
</tr>
<tr>
<td>Fine Agg.</td>
<td>Brown</td>
<td>1900</td>
<td>1.00</td>
<td>1500</td>
</tr>
</tbody>
</table>
Pavement Temperature Profile Prediction

TEMPS – Climatic Data

Climatic Data Sources
1. National Climate Data Center (NCDC)
 The following website provides free hourly temperature data:
 http://gis.ncdc.noaa.gov/

2. National Solar Radiation Data Base (NSRDB)
 The following website provides you with a good source for hourly air temperature, hourly solar radiation and hourly wind speed data which are available mostly for airports:
 http://nedc.nrel.gov/solar/old_data/nsrdb/

3. Long Term Pavement Performance (LTPP)
 The following website provides LTPP data, which are monitored on pavement sections in the United States over years:
 http://www.infospave.com/
Pavement Temperature Profile Prediction

TEMPS – Surface Characteristics
Pavement Temperature Profile Prediction

TEMPS – Pavement Structure
Pavement Temperature Profile Prediction

TEMPS – Mesh Generator
Pavement Temperature Profile Prediction

TEMPS – Run Analysis

Time Efficiency of Computation: Implicit Scheme

Run time for 1 years analysis period
(3.10 GHz proc. and 4.00 GB RAM)

< 10 seconds using 1 hour time step*

* Note: 1 hour time step was chosen without jeopardizing the model accuracy for prediction.
Pavement Temperature Profile Prediction
TEMPS – Output Results
Pavement Temperature Profile Prediction

TEMPS – Output Results
Pavement Temperature Profile Prediction

TEMPS – Output Summary

Example-Montana - TEMPS

Pavement Temperature Profile Summary

<table>
<thead>
<tr>
<th>Date-Time</th>
<th>Depth</th>
<th>z = 0.01 m</th>
<th>z = 0.02 m</th>
<th>z = 0.03 m</th>
<th>z = 0.04 m</th>
<th>z = 0.05 m</th>
<th>z = 0.06 m</th>
<th>z = 0.07 m</th>
<th>z = 0.08 m</th>
<th>z = 0.09 m</th>
<th>z = 0.1 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/1/2001</td>
<td>0:00</td>
<td>-1.14°C</td>
<td>-1.17°C</td>
<td>-1.2°C</td>
<td>-1.23°C</td>
<td>-1.26°C</td>
<td>-1.29°C</td>
<td>-1.32°C</td>
<td>-1.35°C</td>
<td>-1.38°C</td>
<td>-1.41°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>1:00</td>
<td>-1.39°C</td>
<td>-1.37°C</td>
<td>-1.36°C</td>
<td>-1.38°C</td>
<td>-1.40°C</td>
<td>-1.42°C</td>
<td>-1.45°C</td>
<td>-1.47°C</td>
<td>-1.49°C</td>
<td>-1.51°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>2:00</td>
<td>-1.47°C</td>
<td>-1.46°C</td>
<td>-1.45°C</td>
<td>-1.44°C</td>
<td>-1.43°C</td>
<td>-1.42°C</td>
<td>-1.40°C</td>
<td>-1.38°C</td>
<td>-1.35°C</td>
<td>-1.32°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>3:00</td>
<td>-1.29°C</td>
<td>-1.33°C</td>
<td>-1.36°C</td>
<td>-1.38°C</td>
<td>-1.40°C</td>
<td>-1.42°C</td>
<td>-1.45°C</td>
<td>-1.48°C</td>
<td>-1.51°C</td>
<td>-1.55°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>4:00</td>
<td>-0.97°C</td>
<td>-1.06°C</td>
<td>-1.13°C</td>
<td>-1.2°C</td>
<td>-1.25°C</td>
<td>-1.30°C</td>
<td>-1.33°C</td>
<td>-1.36°C</td>
<td>-1.38°C</td>
<td>-1.41°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>5:00</td>
<td>-1.14°C</td>
<td>-1.16°C</td>
<td>-1.19°C</td>
<td>-1.23°C</td>
<td>-1.26°C</td>
<td>-1.30°C</td>
<td>-1.33°C</td>
<td>-1.36°C</td>
<td>-1.38°C</td>
<td>-1.41°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>6:00</td>
<td>-1.16°C</td>
<td>-1.19°C</td>
<td>-1.22°C</td>
<td>-1.24°C</td>
<td>-1.26°C</td>
<td>-1.30°C</td>
<td>-1.33°C</td>
<td>-1.36°C</td>
<td>-1.38°C</td>
<td>-1.41°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>7:00</td>
<td>-0.91°C</td>
<td>-0.99°C</td>
<td>-1.06°C</td>
<td>-1.12°C</td>
<td>-1.17°C</td>
<td>-1.22°C</td>
<td>-1.27°C</td>
<td>-1.31°C</td>
<td>-1.35°C</td>
<td>-1.38°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>8:00</td>
<td>-0.86°C</td>
<td>-0.93°C</td>
<td>-0.99°C</td>
<td>-1.05°C</td>
<td>-1.11°C</td>
<td>-1.16°C</td>
<td>-1.21°C</td>
<td>-1.25°C</td>
<td>-1.30°C</td>
<td>-1.34°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>9:00</td>
<td>-0.57°C</td>
<td>-0.68°C</td>
<td>-0.78°C</td>
<td>-0.87°C</td>
<td>-0.95°C</td>
<td>-1.03°C</td>
<td>-1.09°C</td>
<td>-1.16°C</td>
<td>-1.21°C</td>
<td>-1.27°C</td>
</tr>
<tr>
<td>12/1/2001</td>
<td>10:00</td>
<td>0.53°C</td>
<td>0.23°C</td>
<td>-0.02°C</td>
<td>-0.24°C</td>
<td>-0.42°C</td>
<td>-0.58°C</td>
<td>-0.72°C</td>
<td>-0.84°C</td>
<td>-0.95°C</td>
<td>-1.05°C</td>
</tr>
</tbody>
</table>

General Summary

- Overall Minimum Pavement Temperature: -21.12°C Occurred On: 3/8/2002 - 8:00, At the Depth of: 0.01 m
- Overall Maximum Pavement Temperature: 51.04°C Occurred On: 7/12/2002 - 16:00, At the Depth of: 0.01 m

Export General Summary
Pavement Temperature Profile Prediction

TEMPS – Output Summary

Example-Montana - TEMPS

Pavement Temperature Profile Summary

Date-Time	Depth	z = 0.01 m	z = 0.02 m	z = 0.03 m	z = 0.04 m	z = 0.05 m	z = 0.06 m	z = 0.07 m	z = 0.08 m	z = 0.09 m	z = 0.1 m
12/1/2001 - 0:00 | -1.14°C | -1.17°C | -1.2°C | -1.23°C | -1.26°C | -1.29°C | -1.32°C | -1.35°C | -1.38°C | -1.41°C | -1.41°C |
12/1/2001 - 1:00 | -1.39°C | -1.37°C | -1.36°C | -1.39°C | -1.42°C | -1.44°C | -1.47°C | -1.49°C | -1.5°C | -1.5°C | -1.5°C |
12/1/2001 - 2:00 | -1.47°C | -1.46°C | -1.45°C | -1.44°C | -1.45°C | -1.46°C | -1.47°C | -1.49°C | -1.5°C | -1.5°C | -1.5°C |
12/1/2001 - 3:00 | -1.29°C | -1.33°C | -1.36°C | -1.42°C | -1.44°C | -1.46°C | -1.48°C | -1.5°C | -1.5°C | -1.5°C | -1.5°C |
12/1/2001 - 4:00 | -0.97°C | -1.06°C | -1.13°C | -1.25°C | -1.34°C | -1.42°C | -1.45°C | -1.49°C | -1.5°C | -1.5°C | -1.5°C |
12/1/2001 - 5:00 | -1.14°C | -1.18°C | -1.19°C | -1.23°C | -1.26°C | -1.33°C | -1.38°C | -1.43°C | -1.43°C | -1.38°C | -1.43°C |
12/1/2001 - 6:00 | -1.16°C | -1.22°C | -1.27°C | -1.28°C | -1.33°C | -1.39°C | -1.42°C | -1.38°C | -1.38°C | -1.38°C | -1.38°C |
12/1/2001 - 7:00 | -0.91°C | -1.06°C | -1.17°C | -1.12°C | -1.17°C | -1.21°C | -1.25°C | -1.31°C | -1.31°C | -1.31°C | -1.31°C |
12/1/2001 - 8:00 | -0.86°C | -0.93°C | -0.99°C | -0.99°C | -0.95°C |
12/1/2001 - 9:00 | -0.57°C | -0.68°C | -0.78°C | -0.87°C | -0.95°C | -1.03°C | -1.09°C | -1.16°C | -1.21°C | -1.27°C | -1.27°C |
12/1/2001 - 10:00 | 0.53°C | 0.23°C | -0.02°C | -0.24°C | -0.42°C | -0.58°C | -0.72°C | -0.95°C | -1.05°C | -1.16°C | -1.16°C |

General Summary

Start Date: Saturday, December 1, 2001
End Date: Saturday, November 30, 2002

Detailed Summary

Date	Average Pavement Temperature (°C)	Minimum Pavement Temperature (°C)	Maximum Pavement Temperature (°C)	Pavement Temperature Standard Deviation (°C)
12/1/2001 | 1.64 | -1.47 | 6.74 | 2.81
12/2/2001 | 3.77 | 1.23 | 8.16 | 2.39
12/3/2001 | 3.16 | 0.31 | 8.58 | 2.64
12/4/2001 | 0.25 | -2.33 | 4.51 | 2.25
12/5/2001 | -1.84 | -3.79 | 2.79 | 1.93
12/6/2001 | 0.13 | -3.01 | 5.49 | 2.75
12/7/2001 | 1.21 | -2.21 | 6.39 | 2.75
12/8/2001 | 5.52 | 1.52 | 11.81 | 3.41
12/9/2001 | 4.1 | -2.33 | 8.69 | 2.97
Pavement Temperature Profile Prediction

TEMPS – Predicted versus Measured

Great Falls, MT at depth of 0.09 m (3.5 inch)

Particle Swarm Optimization (PSO) Algorithm:
Single yearly surface characteristics
Pavement Temperature Profile Prediction
TEMPS – Predicted versus Measured

Great Falls, MT at depth of 0.09 m (3.5 inch)

Particle Swarm Optimization (PSO) Algorithm:
Single yearly surface characteristics

Optimization need to be refined to include monthly surface characteristics
Pavement Temperature Profile Prediction

TEMPS – Additional Improvements

• Optimize the surface characteristics for the US (Albedo, Emissivity, Absorption) using Particle Swarm Optimization (PSO) Algorithm
 – Monthly or seasonal values.

• Create/Include input files for LTPP SMP sections.

• Provide a summary of the average 7-day pavement temperature at various depths.

• Provide a summary of pavement cooling/warming rates.
Thank You!