

Intermediate Temperature Parameter for PG Asphalt Binders

Asphalt Binder Expert Task Group Meeting 16 September 2014 Baton Rouge, LA

Asphalt Binder ETG: Intermediate Temperature Parameter Task Force

- Task Force
 - Mike Anderson
 - Dave Anderson
 - Hussain Bahia
 - Pouya Teymourpour
 - Gaylon Baumgardner
 - Gayle King
 - Bob McGennis
 - Jean-Pascal Planche
 - Gerald Reinke
 - Geoff Rowe
 - Hassan Tabatabaee

• Purpose

- To evaluate the existing intermediate temperature parameter and criterion in AASHTO M320 and MP332 and, if necessary, revise and/or develop one or more parameters that:
 - do not require significantly more testing than the current intermediate temperature parameter (G*sin δ) determined using AASHTO T315;
 - have reproducibility at least comparable to, but preferably better than the d2s% values for the current intermediate temperature parameter; and
 - are related to the rheological and failure properties of the asphalt binder at intermediate temperature.

- Materials
 - It has been suggested that the asphalt binders being produced today may be different enough from the SHRP binders that the G*sin δ parameter and/or the criterion may not be applicable.

- "Old Conventional"
 - SHRP MRL asphalt binders
 - Used in developing the current PAV DSR parameter
- "New Conventional"
 - Current production
 - Represent cross-section of asphalt binders in US
 - AI to acquire approximately 50 gallons of each for current and future testing. AI to distribute samples as needed to the testing labs
- "New Unconventional"
 - Asphalt binders formulated by Bob McGennis (HollyFrontier) to represent binders that are expected to have some unusual intermediate temperature responses compared to "New Conventional" asphalt binders

- SHRP MRL Binders
 - Used in developing the current PAV DSR parameter
 - Evaluate existing data
 - New testing conducted
 - Linear Amplitude Sweep
 - Conducted on RTFO- and PAV-aged binder at 15, 20, and 25°C
 - Additional temperatures for PAV-aged binders corresponding to T_{int} (according to M320 grade)

LAS Data for AAA: Comparison of Temperature Effect at Varying Aging

asphalt institute

LAS Data for AAA: Comparison of Aging Effect at Varying Temperature

• SHRP MRL Binders

- New testing conducted
 - Temperature-Frequency Sweep
 - Conducted on Original, RTFO-aged, and PAV-aged binders
 - Temperature sweep from 5-55°C
 - Frequency sweep from 0.1 to 100 rad/s (10 pts/decade)
 - BBR Testing
 - Conducted on Original, RTFO-aged, and PAV-aged binders
 - Used with temperature-frequency sweep data to complete mastercurve
 - Mastercurve analysis
 - Geoff Rowe

Mastercurve: AAG-Original

Black Space: AAG-Original

Mastercurve: AAM-Original

Black Space: AAM-Original

asphalt institute

• SHRP MRL Binders

- New testing conducted
 - DSC
 - Differential Scanning Calorimeter
 - Used to determine glass transition and crystallization properties
 - Conducted by Western Research Institute
 - Testing complete on AAD, AAG, AAK, and AAM for all three aged conditions (Original, RTFO, and PAV)
 - SAR-AD
 - Automated saturates, aromatics, resins, and Asphaltene Determinator™(AD)
 - Conducted by Western Research Institute
 - Testing complete on AAD, AAG, AAK, and AAM for all three aged conditions (Original, RTFO, and PAV)

DSC Results

Table 2. Summary of DSC Results

Sample	First Heating Scan <u>revHF</u> (u1)				Second Heating Scan revHE (u2)				First Heating Scan HF (u1)		Second Heating Scan HF (u2)		Second Cooling Scan (d2)		
	℃	Onset °C	End °C	Width ℃	Height J/g	<mark>,</mark> ₽	Onset °C	End °C	Width °C	Height J/g	Melting Enthalpy J/g	Crystalline Content mass %	Melting Enthalpy J/g	Crystalline Content, mass %	Crystallization Onset Temperature °C
AAD-O	-25.2	-42.8	4.1	46.9	0.48	-26.0	-43.2	3.7	46.8	0.45	1.49	0.8	1.70	0.9	29.6
AAD-R	-27.8	-42.3	-1.5	40.8	0.42	-27.1	-42.4	-0.7	41.7	0.41	1.78	1.0	1.02	0.6	30.8
AAD-P	-26.7	-43.4	0.7	44.1	0.40	-26.8	-42.5	0.6	43.1	0.39	2.06	1.1	2.04	1.1	34.7
AAG-O	-6.5	-24.3	17.4	41.7	0.38	-5.3	-24.5	17.5	42.0	0.39	0.00	0.0	0.00	0.0	-
AAG-R	-7.9	-25.6	16.3	41.9	0.42	-6.9	-26.8	17.1	43.9	0.42	0.00	0.0	0.00	0.0	
AAG-P	-6.2	-27.1	18.0	45.1	0.40	-6.0	-28.5	20.0	48.5	0.39	0.00	0.0	0.00	0.0	-
AAK-O	-22.5	-38.6	5.8	44.4	0.36	-24.9	-38.6	3.4	42.1	0.36	2.19	1.2	1.74	1.0	41.0
AAK-R	-22.0	-37.4	3.1	40.5	0.36	-22.0	-38.7	1.3	39.9	0.33	1.73	1.0	1.62	0.9	38.9
AAK-P	-22.6	-39.2	10.5	49.7	0.37	-21.8	-37.9	7.2	45.1	0.36	1.42	0.8	1.30	0.7	41.1
AAM-O	-24.7	-40.8	3.7	44.6	0.44	-24.4	-39.2	6.7	45.9	0.42	6.73	3.7	6.75	3.7	49.7
//	39.5	38.2	42.9	4.7	0.05	-	-	-	-	-					
AAM-R	-24.0	-40.1	4.1	44.2	0.44	-22.0	-37.6	2.8	40.3	0.36	6.07	3.4	6.68	3.7	49.3
	40.6	38.7	42.1	3.4	0.05	-	-	-	-	-					
AAM-P	-23.1	-40.4	4.9	45.3	0.45	-23.7	-37.9	3.2	41.0	0.36	6.75	3.8	6.58	3.7	50.8
	41.0	38.7	42.7	4.0	0.06	-	-	-	-	-					

• SHRP MRL Binders

- New testing conducted
 - Torsion Bar
 - Conducted by MTE Services
 - Testing on AAD, AAG, AAK, and AAM for all three aged conditions (Original, RTFO, and PAV)

asphalt institute

- 4-mm Parallel Plate DSR
 - Conducted by MTE Services
 - Testing complete on AAD, AAG, AAK, and AAM for all three aged conditions (Original, RTFO, and PAV)
- Vialit
 - Coordinated by Geoff Rowe
 - Analysis forthcoming

"New Conventional" Asphalt Binders

- Current production
- Represent cross-section of asphalt binders in US
 - Approximately 8-10 binders
 - Eight sources (50 gallons each) now at Al
- M320 testing followed by additional testing TBD

Binder ID	Grade
NC-A	PG 58-28
NC-B	PG 58-31
NC-C	PG 58-28
NC-D	PG 64-22
NC-E	PG 64-16
NC-F	PG 64-22
NC-G	PG 67-22
NC-H	PG 70-10

asphalt institute

	NC-A	NC-B	NC-C	NC-D	NC-E	NC-F	NC-G	NC-H
Tc,O-DSR	60.4	59.5	58.1	66.4	67.5	66.0	69.7	72.0
Tc,R-DSR	60.6	60.6	58.9	68.4	67.8	66.8	70.8	71.0
Tc,P-DSR	18.7	15.6	17.1	22.5	26.4	23.5	22.0	34.7
Tc,P-G*	20.6	17.7	19.4	26.0	28.3	25.9	24.2	35.4
ΔTc,Int	1.9	2.2	2.3	3.5	1.9	2.4	2.2	0.6
δ at Tc,P- DSR	48.5	46.9	44.9	40.8	49.0	46.2	47.0	62.7
Tc,S	-30.1	-32.1	-31.0	-28.6	-22.9	-26.1	-27.7	-10.8
Tc,m	-31.4	-33.3	-30.4	-24.3	-23.9	-25.3	-28.7	-15.2
ΔTc,Low	-1.3	-1.2	0.6	4.3	-1.1	0.9	-1.0	-4.4
Grade	60.4- 30.1	59.5- 32.1	58.1- 30.4	66.4- 24.3	67.5- 22.9	66.0- 25.3	69.7- 27.7	71.0- 10.8

New Conventional Binders

New Conventional Binders

- LAS Testing
 - Two temperatures
 - Intermediate grade temperature (T_{int}), T_{int} -3°C

		LAS Temp	Tc,P-DSR, °C		
NC-A	PG 58-28	16	19	18.7	
NC-B	PG 58-31	16	19	15.6	
NC-C	PG 58-28	16	19	17.1	
NC-D	PG 64-22	22	25	22.5	
NC-E	PG 64-16	25	28	26.4	
NC-F	PG 64-22	22	25	23.5	
NC-G	PG 67-22	22	25	22.0	
NC-H	PG 70-10	34	37*	34.7	

New Conventional Binders: LAS

New Conventional Binders: LAS Slope (B) as f(T)

New Conventional Binders: LAS Slope (B) as $f(\Delta T_{c,Low})$

New Conventional Binders: LAS Slope (B) as $f(\delta @T_{c.P-DSR})$

	Hard Blend Component						
Soft Blend Component	PDA Asphalt	SDA Asphalt	ROSE Pitch from WTS	ROSE Pitch from WCS			
Low Vis Aromatic Oil	Х	Х	Х	Х			
High Vis Aromatic Oil	Х	Х	Х	Х			
Soft PDA Asphalt	Х	х	Х	х			
REOB #1	Х						
REOB #2	х	х					
Waste Motor Oil	Х	х					
Low Vis VTB (low temp spread)	х	х	х	x			

Other materials:

Non-blended material – PG 64-16 (oxidized binder)

PG binder containing Fisher-Tropsch wax

PG binder containing oxidized polyethylene wax

"New Unconventional" Asphalt Binders

- "New Unconventional" Binder Testing
 - Targeting 1.2 kPa @ 64°C and testing as PG 64-22.
 - MSCR
 - Thanks to Bob McGennis and Thomas Ludlum, both HollyFrontier
- Purpose
 - Evaluate "New Unconventional" binders and determine which to include in complete testing program

"New Unconventional" Asphalt Binders

I	1	Original	PTEO	DAV			
		Original					
	 	6490	D3N	25%	11		r
Coft Dianal	Linud Dia ad	04-0	04-0	25-0	-1/	2-0	
Soft Blend	Hard Blend	G*/sin o,	G*/sin o,	G*/sin o,	S(60),	m(60)	EST. ΔI_c
Component	Component	кра	кра	KPa 4071	мра	0.007	1.0
	PDA Asphalt	1.24	2.94	4071	362	0.297	-1.2
LOW VIS	SDA Asphalt	1.25	6.31	4043	18/	0.2/4	+1.1
Aromatic Oil	ROSE Pitch WCS	1.19	3.19	5227	306	0.324	-3.1
	ROSE Pitch WTS	1.19	3.25	4756	275	0.334	-3.3
	PDA Asphalt	1.24	2.54	6124	301	0.308	-1.0
High Vis	SDA Asphalt	1.22	4.72	3202	172	0.286	+6.4
Aromatic Oil	ROSE Pitch WCS	1.28	2.92	5161	236	0.325	-0.9
	ROSE Pitch WTS	1.17	2.74	4917	214	0.333	-1.1
	PDA Asphalt	1.35	2.75	4426	246	0.299	+1.8
Soft PDA	SDA Asphalt	1.14	2.67	1897	184	0.313	+2.6
Asphalt	ROSE Pitch WCS	1.37	2.93	4155	209	0.314	+1.4
	ROSE Pitch WTS	1.24	2.70	3917	202	0.313	+1.8
REOB #1	PDA Asphalt	1.22	3.70	3552	146	0.255	+11.6
0500 #2	PDA Asphalt	1.20	3.63	3685	179	0.244	+11.2
REOB #2	SDA Asphalt	1.35	22.55	2521	66	0.188	+26.5
Waste Motor	PDA Asphalt	1.34	4.53	4183	220	0.267	+6.7
Oil	SDA Asphalt	1.19	18.52	3017	90	0.190	+23.6
	PDA Asphalt	1.21	2.89	6538	359	0.268	+2.2
	SDA Asphalt	1.25	4.14	4065	244	0.245	+8.4
LOW VIS VIB	ROSE Pitch WCS	1.20	3.27	5991	285	0.263	+4.8
	ROSE Pitch WTS	1.11	2.75	5337	263	0.277	+4.9
	PG 58-28	1.21	3.12	2347	119	0.340	+3.1
FT Wax 1	PG 64-22	(a)	(a)	(b)	185	0.300	+4.2
	PG 58-28	1.21	3.12	2347	119	0.340	+3.1
FT Wax 2	PG 64-22	(a)	(a)	(b)	202	0.270	+7.0
Oxidized PE	PG 58-28	1.19	2.91	2415	118	0.345	+2.7
Oxidized	PG 64-16	1.14	2.65	(b)	(c)	(c)	+11.5

"New Unconventional" Asphalt Binders

		Original	PAV				
			DSR		BBR		
		64°C	64°C	25°C	-12	2°C	
Soft Blend	Hard Blend	G*/sin δ,	G*/sin δ,	G*/sin δ,	S(60),	m(60)	Est. ∆T _c
Component	Component	kPa	kPa	kPa	MPa		
	PDA Asphalt	1.24	2.94	4071	362	0.297	-1.2
Low Vis	SDA Asphalt	1.25	6.31	4043	187	0.274	+1.1
Aromatic Oil	ROSE Pitch WCS	1.19	3.19	5227	306	0.324	-3.1
	ROSE Pitch WTS	1.19	3.25	4756	275	0.334	-3.3
	PDA Asphalt	1.24	2.54	6124	301	0.308	1.0
High Vis	SDA Asphalt	1.22	4.72	3202	172	0.286	+6.4
Aromatic Oil	ROSE Pitch WCS	1.28	2.92	5161	236	0.325	-0.9
	ROSE Pitch WTS	1.17	2.74	4917	214	0.333	-1.1
		i	i				

Next Steps

- Conference Call September 2014
 - General agreement that we still have some effort to go before we solve the issue
 - Aging still a consideration
 - May need to get more aging than is currently provided by PAV practice
 - WRI USAT one possible option
 - So...what can we do within the existing specification?
 - Capturing effects of excessive age-related cracking?
 - R-value
 - Minimum phase angle at intermediate temperature grade (or more appropriately at G*=5000 kPa)
 - ΔTc

"Old Conventional" Asphalt Binders: R-Value as a Function of Phase Angle

"Old Conventional" Asphalt Binders: R-Value as a Function of Δ Tc

asphalt institute

Next Steps

- Continue Evaluation of "Old Conventional" Asphalt Binders
 - 4-mm PP DSR, DSC, SAR-AD, Vialit, LAS
 - Other
- Continue Evaluation of "New Conventional" Asphalt Binders
 - Selected tests
- Select "New Unconventional" Asphalt Binders for Evaluation

Thanks!